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PREFACE

The Third Symposium on Nonlinear Constitutive Relations for High
Temperature Applications, sponsored jointly by the NASA Lewis Research Center,
Cleveland, Ohio, and The University of Akron was held at The University of
Akron, Akron, Ohio, June 11-13, 1986. Over one-hundred participants and
attendees representing government agencies, universities, and industry were in
attendance. The purposes of the symposium were (1) to review the state-of-the
art in nonlinear constitutive modeling of high-temperature materials, (2) to
document and disseminate the research progress and new technology developed to
date and (3) to identify needs for future research and development in the areas
of constitutive modeling, 1ife prediction, and structural analysis applications.

One of the specific goals of NASA is to foster technological development
of analytical/experimental methodologies for improved design of gas turbine
engine structures as well as advanced aerospace propulsion engine structures,
including hypersonic vehicle and reusable space propulsion engine structures.
To support these technologies, there is considerable development work yet
needed in the area of nonlinear constitutive relations for high-temperature
applications. This has become an increasingly critical need in light of recent
advances in high-temperature materials technology (including single crystal and
directionally solidified superalloys, metal matrix composites, and ceramic
matrix composites) in response to new demands on material performance. NASA
Lewis, in cooperation with industry, universities, and other government
agencies, is supporting this new technology development; some of which is
reported in this symposium publication. The symposium served not only to
foster this technological development, but also to serve as a forum for all
industries with a commonality in technology interests. The common interests
addressed were development of nonlinear constitutive models/experiments
(including 1ife prediction models for advanced materials), their implementation
into structural analysis codes, and their application to analyze advanced
structures at elevated temperatures.

The symposium was organized into the following five sessions:

I. Constitutive Modeling
II. Damage and Life Prediction Modeling
ITII. Experimental Techniques
IV. Numerical Methods and Computation
V. Structural Applications

There were a total of twenty-nine papers presented. The papers and
authors are grouped by session in the Contents.

The symposium co-chairmen wish to thank the session chairmen;
distinguished invited lecturers, Professor E.T. Onat from Yale University,
Professor F.A. Leckie from the University of California at Santa Barbara, and
Professor A.R.S. Ponter from the University of Leicester, England; and authors
whose efforts contributed greatly to the technical excellence of the symposium.
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We are also grateful to Mr. Marvin Phillips and the Continuing Education Office
at the University of Akron, for their help and superb handling of the logistics
of the symposium.

Symposium Co-chairmen:

NASA Lewis Research Center The University of Akron
R.L. Thompson T.Y. Chang
G.R. Halford D.N. Robinson

J.R. Ellis
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THE VISCOPLASTICITY THEORY BASED ON OVERSTRESS
APPLIED TO THE MODELING OF A NICKEL BASE SUPERALLOY AT 815°C

E. Krempl, H. Lu and D. Yao
Department of Mechanical Engineering,
Aeronautical Engineering and Mechanics

Rensselaer Polytechnic Institute
Troy, NY 12180-3590

Short-term strain rate change, creep and relaxation tests were performed in an MTS
computer-controlled servohydraulic testing machine. Aging and recovery were found to
be insignificant for test times not exceeding thirty hours. The material functions
and constants of the theory were identified from results of strain rate change tests,
Numerical integration of the theory for relaxation and creep tests showed good pre-
dictive capabilities of the viscoplasticity theory based on overstress.

Introduction

Advanced materials are being developed for use in high temperature gas turbine
applications. To fully utilize the capability of these new materials their deforma-
tion properties and their creep and fatigue fracture characteristics must be deter-
mined by suitable experiments. The experimental findings must be analyzed, idealized
and translated into constitutive equations for use in stress analysis and life predic-
tion. Only when these ingredients together with appropriate computational tools are
available can durability analysis be performed in the design stage long before a compo-
nent is being built. This paper contributes to the design methodology and reports on
an experimental investigation of the deformation behavior of a nickel-base superalloy
at 815°C and on its mathematical modeling using the viscoplasticity theotry based on
overstress.

Testing Method and Test Materials

All tests were performed in an MTS axial-torsion servohydraulic mechanical testing
machine with an MTS 463 Data/Control processor for computer control. An MTS clamshell
furnace was used to heat the specimens. Strain measurement on the gage section was
done with an MTS high-temperature uniaxial extensometer. Strain and load controlled
tests were performed at 815°C. Separate tests checked on the extensometer calibration
(at room temperature) and on the uniformity of the temperature along the gage length,
For the duration of the tests the temperature of the gage section stayed within 2°C
of the nominal temperature.

The nickel-base superalloy test material was donated by AVCO Lycoming and was
delivered in the form of 19 mm coupons. The machined specimens had a gage section
diameter of about 6.5 mm. They were tested in the as-received condition at 815°C.

Experimental Results
Effects of strain rate

Figure 1 shows the results of three tests: two were subjected to continuous
straining at 10" and 10~% s, respectively; the other to a sequential decrease in
strain rates. The significant influence of strain rate is evident. These and other
strain rate change tests revealed no discernible strain rate history effect. The
strain rate change tests in Fig. 1 and others indicate that there is a unique stress
level associated with each strain rate which will be reached after a transient period

1



irrespective of the prior history. The stress levels were determined from the tests
and are listed in Table 1 together with the stress level differences relative to the
stress corresponding to 10™" s~1!.

The tests in Fig. 1 show good reproducibility which was also found with others.
An exception is the stress level at 107° s™! for specimens #12 and #15. At 1.1 percent
strain, specimen 15 suffered a temperature variation of about 4°C which may have caused
the drop-off at point A. The filled triangle indicates the stress level at 1077 s~!
found in other experiments. Premature cracking is probably the cause for the decrease
in stress level of specimen #7 before unloading started.

Aging and recovery

To ascertain whether these phenomena have a significant influence on the deformation
behavior two specimens were subjected to a 3 and 33 hours hold period, respectively, at
zero load after loading to 1 percent strain and subsequent unloading had been accomplished,
It is seen from Fig. 2 that the stress~strain curves before and after the rest period are
within the normal scatter of the test results. This can be easily ascertained by compar-
ing the responses of the two specimens and the results of Figs. 1 and 2.

The tests show therefore that recovery and aging are insignificant for this material
for times less than 33 hours at 815°C. This result was very surprising to the authors,

Modeling. The Viscoplasticity Theory Based on Overstress (VBO)
The model and its material functions

In the present version of VBO recovery and aging are not included. In the uniaxial
state of stress the theory consists of two coupled, nonlinear, ordinary differential
equations which contain two positive, decreasing material functions; the viscosity func-
tion k controls the rate dependence and the shape function Y influences the shape of the
knee of the stress-strain curve. In addition, the elastic modulus E, the tangent modulus
Er and the asymptotic value A of the equilibrium stress g enter into the theory. The
equilibrium stress is attained in the limit as rates approach zero. The difference
0-g =X between the stress O and g is called the overstress and k and ¥ are only functions
of Xx. The equations are

de/dt = de€t/dt + daei™/dt = do/dt/E + (o-g)/(Ek[x]) (1)

dg/dt = Y[x]de/dt - (g-E_€) (WIx]-E ) |dc™/at|/a (2)

where square brackets following a symbol denote "function of." Under constant strain
rate loading, the system of equations permits asymptotic solutions given by

{do/de} = {dg/de} = E, (3)
{x} = (E-Et) k[{x}]de/dt (4)
{g-Ete} = A dE/dt/|dEin/dt| (5)

where braces denote asymptotic values. Details of the theory are found in [1,2].

The asymptotic solutions are algebraic equations and are used in identifying the
material constants and functions. The procedure exploits (4) to compute the stress
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level differences at different strain rates so that the data of Table 1 can be used.
Details can be found in [3]. The g-curve is obtained by extrapolation and a nonlinear
least square analysis is performed to determine the constants of the shape function,
The material functions and constants obtained by this method are given in Table 2.

Predictions of the theory

With the material constants determined from strain rate change tests, the theory
was applied to predict the outcome of relaxation and creep tests. Figure 3 shows the
results of a strain rate change test followed by relaxation tests of 1024 s duration.
The triangles represent experimental results; the continuous line, the predictions of
the theory as obtained by integrating (1) and (2) numerically using the IMSL routine
DGEAR. The prediction for incremental creep tests is depicted in Fig. 4. The creep
periods last 700 s except at the highest stress level where creep was términated after
300 s. The experimental results are again given as triangles.

The discrepancy between predictions and experiment in Fig. 3 is mainly due to an
overprediction of relaxation in the first relaxation period aa', 1If allowance is made
for this difference and the theoretical curves are translated upwards so that they
coincide at the end of the first relaxation period, the subsequent predictions are very
reasonable. A similar observation holds for the stress vs time relaxation curves,

It is seen that both the theory and the experiment do not show creep at stress
levels a and b in Fig. 4. At the next two stress levels the theory underpredicts the
creep strain but overpredicts it at stress levels e and f.

The fitting of the material functions was only done once on the basis of the strain
rate change test results. Both the creep and the relaxation experiments suggest that
the theory overpredicts at high inelastic strain rates. Since underprediction is
observed at the small stress levels in Fig. 4, it is reasonable to assume that an
optimization of the material functions is possible so as to improve the predictioms.
This optimization and other tests are planned for the future.

Acknowledgment
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TABLE 1

Averaged Flow Stress Levels and Stress Level Differences
for C101 at 815°C

Strain Rate Stress Level Stress Level
s-l at 1.2% Difference
MPa MPa
-3
10 966 132
1074 834 0
-5
10 721 =113
1078 638.4 -195.6
10-7 554.4 -279.6
TABLE 2

THE DETERMINED MATERIAL CONSTANTS AND FUNCTIONS

Material Constants Shape Modulus
E = 156620 MPa Y[x] = c1 + (cz—cl)exp(—c3|x|)
Et = 267 MPa s and x in units of MPa;
A = 421.7 MPa c1=62500, c2=150000
Viscosity Function c3 in units of MPa—l;
-k _
Kx] = k (1 4+ AX ) 3. c3-0.0387
1 k
2
kl = 3150000 s
k2 = 186 MPa
k3 = 9.96
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A VISCOPLASTIC CONSTITUTIVE THEORY FOR METAL MATRIX COMPOSITES
AT HIGH TEMPERATURE

David N. Robinson*
The University of Akron
Akron, Ohio 44325

Stephen F. Duffy*
Cleveland State University
Cleveland, Ohio 44115

John R. Ellist
The University of Akron
Akron, Ohio 44325

SUMMARY

A viscoplastic constitutive theory is presented for representing the high-
temperature deformation behavior of metal matrix composites. The point of view
taken i1s one of a continuum wherein the composite is considered a material in
fts own right, with its own properties that can be determined for the composite
as a whole. It is presumed that a single preferential (fiber) direction is
identifiable at each material point (continuum element), thereby admitting the
idealization of local transverse isotropy. A key ingredient in this work is
the specification of an experimental program for the complete determination of
the material functions and parameters for characterizing a particular metal
matrix composite. The parameters relating to the strength of anistropy can be
determined through tension and torsion tests on longitudinally and circumferen-
tially reinforced thin-walled tubes. Fundamental aspects of the theory are
explored through a geometric interpretation of some basic features analogous
to those of the classical theory of plasticity.

INTRODUCTION

Structural alloys used in high-temperature applications exhibit complex
thermomechanical behavior that is inherently time-dependent and hereditary, in
the sense that current behavior depends not only on current conditions but also
on thermomechanical history. Considerable attention is being focused now on
metal matrix composite materials that possess strong directional characteris-
tics. In high-temperature applications these materials exhibit all the com-
plexities of conventional alloys (e.g., creep, relaxation, recovery, rate
sensitivity, etc.), and in addition, their strong initial anistropy adds fur-
ther complexities.

Here, we present a continuum theory to represent the high-temperature,
time-dependent, hereditary deformation behavior of materials that are initially

*NASA Lewis Resident Research Associate.
tNow at NASA Lewis.
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transversely isotropic. The theory is intended to apply to materials, particu-
larly metallic composites, that can be idealized as psuedohomogeneous continua
with locally definable directional characteristics.

The composite material is viewed as a material in its own right, with its
own properties that can be measured and specified for the composite as a whole.
Experiments for this purpose are outlined in detail in the fourth section of
the paper. This view is intended to satisfy the structural analyst or design
engineer who needs reasonably simple continuum methods of structural analysis
to predict deformation behavior in complex multiaxial situations, particularly
at high temperature where material response is enormously complex. Indeed, the
prediction of component lifetime depends critically on the accurate prediction
of deformation behavior.

The alternative approach is concerned with detailed interactions of the
constituents of the composite: fabrication, bonding, and the relation of the
properties of the composite to the individual properties of the fiber and
matrix. Clearly, such problems are of great importance, and the two approaches
mentioned are not mutually exclusive. Here, however, the continuum point of
view will be emphasized. This is done in the same spirit that the theories of
elasticity, plasticity, viscoelasticity, and others are formulated; on the
basis of macroscopic observations, without direct consideration of the details
of intermolecular, intergranular or interdislocation interactions. Of course,
this is not to imply that qualitative (and quantitative) understanding of
behavior on the microscale should not strongly influence the formulation and
structure of phenomenological theories.

The authors are hopeful this research will complement other ongoing
efforts at NASA Lewis Research Center relating to the high-temperature behavior
of metal matrix composites (refs. 1 to 5). Parts of the present work (believed
essential in representing the time-dependent, hereditary behavior of metals)
may prove helpful in extending the micromechanics equations for the thermal
and mechanical behavior of composites (refs. 1 and 2) to include some important
viscoplastic features.

STATEMENT OF THE THEORY

This work is an extension of that by Robinson (ref. 6) and includes the
former work as a special case. In reference 6, three material parameters over
and above those necessary for representing isotropic viscoplastic behavior were
necessary to account for transverse isotropy. Here, four parameters have to be
specified (fig. 1). The additional parameter arises from a less restrictive
set of assumptions made in the theoretical development. Definition of the
additional parameter leads to more testing to characterize a particular material
but, at the same time, offers the distinct advantage of greater flexibility in
correlating predictions with experimental data.

As in reference 6, the starting point is the assumed existence of a dis-
sipation potential function (refs. 7 to 9); that is

Q=20 (ori D QP

j»aij,



with the generalized normality structure

. aQ
e].j = —_3°1j (2)
-a.
ij a0
= (3
h(qk]) aaij

Here, 93 and «.. denote the components of the applied and internal stress

tensors, respectively, ej denotes the components of the inelastic strain rate
tensor, h is a scalar function of the internal stress, and T 1is the tempera-
ture. Although Q s shown as a function of temperature, only isothermal
deformations will be considered in the following development. Extension to
nonisothermal conditions follows as in reference 10.

In the fully isotropic case, the stress dependence of Q enters only
through the principal invariants of the deviatoric applied and internal
stresses (ref. 10). For transverse isotropy, @ must depend additionally on
the local preferential (fiber) direction denoted by the components of a unit
vector dj (or, as the sense of dj 1is immaterial, on the components of a
symmetric directional tensor didj). Form invariance (objectivity) of Q
requires that it depend only on invariants of the applied and internal
stresses, the directional tensor, and certain products of these tensors
(ref. 11).

A subset of the irreducible set of invariants for form invariance (integ-

rity basis) is used (ref. 11)
1
DS (@
T 2455,
12=did.ZZ -41§ (5)
bt sty 5
lddz (6)
3 =3 44952 ..

I =
J1

where Lj3 denotes the components of the effective stress, that is, the dif-
ference o; the deviatoric applied and internal stresses. I; relates, as in
the isotropic case, to the effective octahedral shear stress, Ip relates to
the shear component of the effective traction on the plane of isotropy (plane
normal to djy), and I3 corresponds to the normal component of the effective

traction along dj.

Taking Q to be dependent on the appropriate invariants and using equa-
tions (2) and (3), the flow law becomes



2
s = f(F) Z.._ n -1 dd.z +d.dZ _ 41.d.d.
n2 k™i ik jk 3717]

1 ki

2
-1
- 41 “’———-)(w.d. - 5..) (7
3(4w2 1 7] i]
and the evolutionary law becomes

2
: H_ . m-8 n_ -1 AT

G
wz 1
- 4l =——— ) 3d.d, - §,. (8)
3 4w2 1 P73 i3 8

with
] 2 _ 12¢0% - 1) .2
LD PN . w0 B DS VA SN DS TS I (9)
2 0 7 |1, Wl 1 3
T n © -
and
1 2 _ 1200 - 1) 2
G=— It - [—2J1r - [=2—2 1 (10)
20 iy > 3
T n 4w - 1

The function f(F) and the material parameters m, B, R, H, and Ky are asso-
ciated with the viscoplastic response (ref. 10); the components of the unit
vector dj (specified in terms of two Euler angles), w, and n, are the four
parameters associated with the direction and strength of transverse isotropy
(fig. 1. Ii, Ié, Ié are invariants of the deviatoric internal stress aij’
similar in form to equations (4) to (6). Note that with w =n =1

equations (7) to (10) reduce to the isotropic forms reported in reference 10.
The details of the derivation of equations (7) to (10) are left to the

references 6, 10, and 11.

For a particular composite material the parameters w and n, designat-
ing the strength of anisotropy, depend on the individual constituent materials
(fiber and matrix) and their volume ratio. Different volume ratios involving
the same constituents are considered different materials. In extending the
present theory to arbitrarily large deformations, the local volume ratio may
change in the course of deformation (as does the local density in an isotropic
material); in which case evolutionary laws for w and n must be specified.
Also, for large deformations and/or rotations, the preferential direction dj
may convect with the material thereby resulting in increasing anisotropic inho-
mogeneity. At this time, large deformations and rotations are not considered.
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SOME FUNDAMENTAL IMPLICATIONS OF THE THEORY

As in earlier works (refs. 6 and 10) F plays the role of a Bingham-Prager
threshold stress function; inelastic response occurs only for F » 0. The sur-
face F = 0 in the stress space encloses stress states that produce elastic
behavior only. Figure 2 shows a typical projection of F = 0 on the o1 - 9

plane for full isotropy (w = n = 1) and the virgin state (aj5 = 0). An infi-
nite family of surfaces F = constant is associated with each inelastic state.
The direction of the inelastic strain rate vector at each stress point on a
given surface is directed normal to the surface. The existence of these sur-
faces and the concept of normality has been demonstrated experimentally for the
isotropic case in reference 12.

Figure 3 shows the corresponding projection of F = 0 on the o1 = %9

plane for the transversely isotropic case with w =n = 2. For each curve
shown, the preferential direction is taken to Tie in the X;, X2 physical
plane with a specified angle ¢ relative to the X; axis. These curves, as
in figure 2, correspond to the virgin state. The shape and orientation of the
surfaces F = 0 (and all surfaces F = constant) now depend on the local pref-
erential direction dj. Note, for instance, that for ¢ = 0, the intercept on
the o) axis is the threshold stress Y|, (figs. 1 and 3), the intercept on

the o,, axis is Yy, and w = (Y /¥7) = 2.

As an interesting and illustrative example, consider the stress path
o = 2022 that is denoted as a dotted line in figures 2 and 3. This is

equivalent to the stress state in a thin-walled tube with closed ends under
internal pressure, where SO is the circumferential or hoop stress and 99

the axial stress. MWith increasing pressure, the stress point eventually
reaches the surface F = 0 and the tube begins to deform inelastically. 1In fig-
ure 2, corresponding to the isotropic tube, inelastic deformation occurs as
indicated by the strain rate vector shown. Normality dictates that the axial
strain rate éz is zero, that is, the tube incurs no inelastic change in

Tength. Contrast this behavior with that of figure 3 with ¢ = 0. This case
represents a circumferentially reinforced tube with a threshold stress in the
circumferential direction that is twice that of the axial direction. As F =
0 is reached and inelasticity begins to occur, the (normal) strain rate vector
has a relatively large axial component €99- The thin tube now experiences

inelastic axial extension. Thus the mode of inelastic deformation has changed
qualitatively with reinforcement. Similar observations are well documented
for time-independent reinforced structures (ref. 13).

EXPERIMENTAL DETERMINATION OF MATERIAL PARAMETERS

Two types of specimens are presumed to be available: thin-walled compos-
ite tubes that are longitudinally reinforced (having a single fiber direction
oriented axially) and those that are circumferentially reinforced (circumferen-
tial fiber orientation). Each type of tube will be loaded either in pure tor-
sion or in pure tension. Although not discussed here, combined tension and
torsion experiments can be used as verification tests to assess the correct-
ness of the multiaxial theory (ref. 12). As is well known, the thin-walled
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tube is an ideal specimen for the development of constitutive relationships in
that it provides a nearly homogeneous and uniform region of stress and strain,
and is statically determinate.

Those parameters relating to_the strength of anisotropy, w and n, and
the threshold strength YL(EKT(4w2 - D1/2) are determined through probing
tests. These tests are designed to determine the inelastic strain rate for a
given stress in the neighborhood of a constant inelastic state, here the ini-
ttal (virgin) state of the material. Indeed, it is the degree of initial
transverse isotropy that is of interest in this study. The probing test, con-
ducted properly, furnishes the desired information without significantly chang-
ing the state.

The material function f(F) and the parameters m, B, R, and H relat-
ing to the viscoplastic properties of the composite are obtained from a combi-
nation of the probing tests and creep tests conducted on longitudinally-
reinforced tubes (or bars). Alternately, in place of the latter tests, one
could use torsion tests on circumferentially reinforced tubes as outlined in
reference 11. The present choice of basing the viscoplastic parameters on uni-
axial creep tests of axially reinforced tubes is motivated by (1) the relative
ease of fabricating longitudinally reinforced tubular specimens over those
reinforced circumferentially and (2) the advantage of characterizing directly
the inelastic response in the critical fiber direction. 1In the case of extreme
reinforcement (e.g., a relatively high volume ratio of very strong fibers that
remain essentially elastic), composite structures are known to be "shear limit-
ed" (ref. 12), and their inelastic behavior is governed largely by the shear
response of the matrix. Under these conditions it may be advantageous to
determine the viscoplastic parameters through the torsional creep tests on cir-
cumferentially reinforced tubes discussed in reference 11.

First, consider a probing test on a longitudinal tube. Pure torsion and
pure tension probes are schematically illustrated as the respective paths o-a
and o-b in the o-t stress space of figure 4(a). Data from such tests take
the form of a sequence of stress and inelastic strain rate pairs, (t,y) along
0-a and (o,e) along o-b. These data can be conveniently plotted as the solid
curves o versus e and T versus vy _in figure 5. Extrapolation of the
o versus e curve in figure 5 to the e = 0 axis furnishes the longitudinal
threshold stress Y.

Specialization of equations (9) and (7) for the path o0-a in figure 4(a)
results in

Fo—m—s - an

and

2T

2e y = f(F) =5 12)

12 ©

3

in which 1(5012) is the applied shear stress. The corresponding equations
for path o-b are



2

Fo9 (13)
(4l - 1)K$
and
6. =6 = f(F) —22 a8
" 3
4~ - 1

where o(Eo]]) is the applied normal stress. Now for F = constant (Q = con-
stant), equations (11) and (13) give

9 . (52_:_1) (1%)
T 2
n
while equations (12) and (14) combine to give
. 2
Y_ (4 -1z _o
e ( 2 ) o T (16
or
ot = 1Y an

Thus, in figure 4(a) points (t,y) along o-a and (o,e) along o-b, having
the same dissipation rate, lie on a common F = constant (Q = constant) curve;
for example, the particular points (TA,+A) and (oA,eA) in figure 4(b).

Pairs of points in the plot of figure (5) that 1ie on an F = constant

Tocus are related geometrically such that areas OpEp and TpY, are equal.
Several such pairs can be matched up giving an average value of the ratio

9. ("—) (18)
T T L
1/2

2
(—————“’nz‘ ‘) - (%)L (19)

Probing tests on circumferentially reinforced tubes produce results
entirely analogous to those discussed above for longitudinally reinforced
tubes; counterparts of figures 4(a), 4(b), and 5 can be constructed.

Thus, from equation (15)

The governing equations corresponding to the pure torsional loading of
the circumferential tube are identical to equations (11) and (12). The equa-
tions relating to pure tension of the circumferential tube are

13



Fa—rp2® (20)

and

=¢ = f(F)

. 20 2
€ W @n
1 4w2 -1

As before, for F = constant (Q = constant), equations (11) and (20) combine to

give
9 1/2
o [ -1)
== (22)
T ( nzwz
whereas equations (12) and (21) give
. 2
Y.(de -llz o (23)
e 2 2 o T
nw
or
oe = Ty (24)

Again, in figure 4(a) points (t,y) along o-a and (o,e) along o-b, with equal
dissipation rates, fall on a common F = constant curve (fig. 4(b)). Simi-
larly, matching pairs of points corresponding to F = constant curves and
averaging gives

1/2

(4“’2 > ‘) - (g—)c (25)

wn

Making use of equation (19), from tests on longitudinally reinforced tubes, and
equation (25), from circumferentially reinforced tubes, results in

)

(26)

W =

and

(o_) (27)
T4
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thereby completely characterizing the strength of initial_anisotropy. Recall
that the longitudinal threshold stress YL(EKT(4w2 - H1/2) §5 also known.

Turn now to the determination of the remaining viscoplastic material
parameters. As indicated earlier, although several options are open in this
regard (including torsional tests on circumferentially strengthened tubes as
in ref. 11), the choice here is to consider uniaxial creep tests on longitudi-
nally reinforced thin-walled tubes. This is in addition to the probing tests
on longitudinal tubes already discussed. Typical results of uniaxial creep
tests are illustrated in figure 6.

According to the present theory, the governing equations for the consid-
ered creep conditions are

2
F e (o -25) - (28)
Y
L

(29)
(300

and

(3N

where

FOF) = =

x)
I

(32)

)
[}

2(m-3)

(4o’ - DY

20

3) D)
]

= 2m

Here, é(Eé]]) is the axial component of inelastic strain rate, and S(Ea]]) is
the uniaxial component of the internal state variable LI The first of equa-

tions (32) indicates that the function f(F) has been specialized as a power
function characterized by the constants u and n.
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Note for future reference that for F >> 0, equation (30), the flow law,
can be approximated as

¢ = B(o - )] (33)
where
B - ! (34)
w8l - DY

Also, during the early part of primary (transient) creep where s is small
(fig. 6), the evolutionary law equation (31) can be approximated as

s = =x)e (35

The initial creep rate following abrupt application of the stress o
(fig. 6), is expressed by equation (33) with s = 0. That is

Bo2n+1 (36)

Information for determining B and n can be obtained directly from the ini-
tial creep rates as illustrated in figure 6, or alternatively, and more accu-
rately, from the data generated from the probing tests already considered; the
o versus ¢ data illustrated in figure 5. By assuming these data correlate
with equation (36), a plot of log(e) versus log(o) provides both n and B
directly (fig. 7). If correlation with equation (36) is not satisfactory a
different function f(F) may have to be considered in the first of equa-
tions (32). 1In this study, it is assumed that the power law form is appropri-
ate (as has been found for several isotropic alloys) and that n and B can
be determined. With n, B, w, and Y_ known, p is then determined from equa-
tion (34).

Now focus attention on steady state creep information (fig. 6). At
steady state s = 0, so from equation (31)

. E H+1
e = (ﬁ) SS 3N

Steady state creep data provides the pairs (o,eg) but with w, u, Y, and n
known, equation (30) allows sg (the steady state internal stress) to be calcu-
lated for each pair, thus giving the data pairs (eg,sg). Plotting log(eg) ver-

sus log(sg) provides values of (R/H) and m directly as indicated by the
logarithmic form of equation (37) and figure 8. The last of equations (32)
provides the exponent m.
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Attention is now turned to the primary creep stage of the creep tests. As

indicated in equation (35), the evolution of s in the early stages
creep is governed by

Eliminating time and integrating

results in
SB+1 i ﬁ
B+ "€

or in transposed logarithmic form

log(e) = (B + 1)log(s) + log (:—:—1———)
HB + 1)

Now using equation (33) to solve for s yields,

-\1/2n+1
s =0 - &
)

and substituting this result into equation (41) gives

~ -\1/2n+1
log(e) = (B + 1log yo - <%> g + log (:_Al )
HB + 1)

of primary

(38)

(39)

(40)

(41

(42)

(43)

Early primary creep data provides the data triplets (o,e,e) at each time. MWith
B and n known, these data can be plotted (fig. 9) in the form of equa-

tion (43) yielding Q(E + 1) and (B + 1). Using equations (32), 8 and H
can then be determined. Since R/H 1is known from steady state creep data,

individual values for R and H can then be found. Further, by making use
of the second and third of equations (32), the parameters R _and H then are
known. Finally, the viscoplastic parameters Y[ (K1(4w? - D1/2), 4, n, m, B,
R, and H are completely determined, as are the measures of the strength of

transverse isotropy, w and n.

SUMMARY AND CONCLUSIONS

A constitutive theory is presented to represent the hiah-temperature,
time-dependent, hereditary behavior of materials that can be idealized as
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initially transversely isotropic. In particular, the theory is applicable to
metal matrix composite materials at elevated temperature where their mechanical
behavior includes significant viscoplasticity (e.g., creep, relaxation, thermal
recovery, etc.) and, at the same time these materials are strongly directional.
It is presumed that a single preferential (fiber) direction is identifiable at
each material point thereby admitting the idealization of local transverse iso-
tropy. Although not addressed here, the theory can be extended, at the expense
of some additional complexity, to account for two (or more) identifiable pref-
erential directions at each material point.

The composite is viewed as a continuum in its own right; and detailed
interactive effects of the constituents are not accounted for directly. Of
course, this precludes predictions of detailed phenomena such as failure by
debonding, delamination, and so forth. However, the result is a reasonably
simple multiaxial constitutive theory that is easily implemented into struc-
tural analysis codes for predicting the deformation response of structures sub-
jected to complex thermomechanical loading histories. Because the response in
the presence of material anisotropy is often highly nonintuitive, this theory
provides a valuable tool for the design engineer.

Some fundamental aspects of the theory are explored through geometric
interpretation of some basic features analogous to those of time-independent
plasticity theory. Convexity of the dissipation potential surfaces (F =
constant or Q = constant) is demonstrated, and the shape of the surfaces is
shown to be dependent on the strength and orientation of anisotropy. An exam-
ple involving the response of a thin-walled tube under internal pressure demon-
strates the qualitative changes in the inelastic deformation mode that can
result from directional strengthening (anisotropy).

A key ingredient in the present work is the specification of an experi-
mental procedure for the complete determination of the material parameters for
a particular metal matrix composite. The parameters relating to the strength
of anisotropy are determined through probing experiments on thin-walled tubes
of two kinds; circumferentially reinforced (a single fiber direction oriented
circumferentially) and longitudinally reinforced (axial fiber direction). The
tubes are loaded in both tension and torsion. The parameters relating to the
viscoplastic properties of the composite are determined primarily through uni-
axial creep tests conducted on longitudinally reinforced tubes. Alternately,
as discussed, one could use pure torsion tests on circumferentially reinforced
tubes in place of the uniaxial creep tests. Additional tests are suggested in
order to assess the correctness and accuracy of the theory.
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Accurate analysis of stress-strain behavior is of critical
importance in the evaluation of life capabilities of hot section
turbine engine components such as turbine blades and vanes. The
constitutive equations used in the finite element analysis of such
components must be capable of modeling a variety of complex behavior
exhibited at high temperatures by cast superalloys. The classical
separation of plasticity and creep employed in most of the finite
element codes in use today is known to be deficient in modeling
elevated temperature time dependent phenomena. Rate dependent,
unified constitutive theories can overcome many of these
difficulties. A new unified constitutive theory was developed to
model the high temperature, time dependent behavior of Rene' 80 which
is a cast turbine blade and vane nickel base superalloy.
Considerations in model development included the cyclic softening
behavior of Rene' 80, rate independence at lower temperatures and the
development of a new model for static recovery.

EXPERIMENTAL PROGRAM

The constitutive behavior of Rene' 80 under a multitude of
conditions was experimentally determined.The test specimens,
experimental temperatures, strain ranges, strain ratios, hold times,
and strain rates were established through an evaluation of the
operating conditions in commercial jet engines. In performing the
experiments, the approach was to evaluate a series of transient and
steady state conditions in each test by using a block cycling
method. By using several combinations of strain range blocks in
different sequences in a single experiment all combinations of
transient effects could be interrogated. The block length was
selected to produce cyclically stable hysteresis loops by the end of
each block. The experimental results of each test were automatically
saved in digitized form in real time by using a data acquisition
device. These final data files could then be used in plotting data
or determining constants in constitutive theories.

PRECEDING PAGE BLANG NOT FILMED
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THEORY DEVELOPMENT

Following a detailed review, the Bodner model [1] and a generic
back stress/drag stress model [2] were selected for further detailed
evaluations with the Rene' 80 data. Many of the results from that
study have been presented previously [2]. It was found that neither
model was adequate for predicting the response characteristics of
Rene' 80 at 1800F. Consequently a new theory was developed which
combined the Bodner exponential flow law with a back stress
formulation. It was found to be necessary to modify the evolution
equations for the back stress to account for static recovery effects
and to account for effects in the small inelastic strain regime.

When these factors were included the final set of equations could be
written as:

..-I A 2 S--"Q-- 1
€ij'= D exp -z(ﬁz)n (—IE_U) (1)
G G
Ri5 = F Sj;+ (1- ) oyl (3)
L ] . f .
1]
s
1 = m(z1 - 2) QI (5)
r'zs = -B(oe/ao)r (ag '“sat) (6)
‘where
[ ] 2 .I .I
R sf 3% %J, aglo)s= 2i3'(0) = 0, 2(0) = 7,

The procedures for determining the constants in these egquaticns
have been reported previously in [2,3]. Basically it involves the
determination of most of the constants through the use of the
monotonic, strain rate dependent, stress-strain curves; only the
saturated value of the drag stress, Zl, and the rate of softening
parameter, m, are determined from cyclic tests. The accuracy of these
equations. has been verified very extensively through comparisons
with a wide variety of experimental data . Figures 1 and 2 show the
correlation of the monotonic stress-strain data at 1400F through
1800F, respectively. That the theory is capable of predicting strain
rate dependent as well as rate independent behavior is clear.
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Figure 3(a) shows a comparison with the first two cycles of a
compressive mean strain test, while Figure 3(b) shows a comparison
with the saturated hysteresis loop of this test. It has been seen
that the theory can alsoc predict the stress relaxation behavior at
high and low temperatures. At 1400F Rene'80 exhibits stress
relaxation, but no strain rate dependence. Creep capability
comparisons are shown in Figures 4 and 5. These predictions depend
strongly on the form of the static recovery term. Note that the form
that is used in the current theory is much different than those used

in other unified approaches.

Multiaxial capability verifications are shown in Figures 6,7 and
8. Figures 6 (a) and (b) show the axial and shear responses,
respectively, for a combined tension/torsion (in-phase) test. Figure
7 shows the experimental results and theory predictions from a
special nonproportional test where segments of proportional cycles
were used . Comparisons of results from the first segment (cycle 5),
and the last segment (cycle 32) of this nonproportional loading
experiment are shown. That the predictions are accurate illustrates
that the theory is good for such conditions without considering the
additional hardening that has been found in some other materials.
Figures 8 shows that the new theory can predict 90 deg. out-of-phase
tension/torsion experimental results with good accuracy.

Figures 9 and 10 show two predictions of the theory with test
data from combined temperature and strain cycling tests. The
predictions are shown to be reasonable considering that the model
development was based only on isothermal test data.

SUMMARY

A new multiaxial constitutive model which can represent the
complex nonlinear high temperature behavior of Rene' 80 has been
developed. The model was extensively verified based on experimental
data at several temperatures. The TMF and nonproportional cyclic
modeling capabilities of the model were demonstrated.
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MODELING THE VISCOPLASTIC BEHAVIOR OF INCONEL 718 AT 1200°F

M.S. Abdel-KaderT, J. Eftis, and D.L. Jones
School of Engineering and Applied Science
The George Washington University
Washington, D.C. 20052

Inconel 718 1is a nickle-based superalloy that possesses
several outstanding elevated-temperature mechanical properties. It has been
widely used for the manufacture of critical compressor and turbine engine
components requiring relatively long service lives. A large number of
tests, including tensile, creep, fatigue, and creep-fatigue have been
performed to characterize the mechanical properties of Inconel 718 at
1200° F, the operating temperature for turbine blades. In addition a few
attempts have been made to model the behavior of Inconel 718 at 1200°F using
viscoplastic theories.

The Chaboche theory of viscoplasticity can model a wide variety of
mechanical behavior, including monotonic, sustained, and cyclic responses of
homogeneous, initially-isotropic, strain-hardening (or softening) materials.
It has been successfully used to model the viscoplastic behavior of several
structural materials of practical importance. This paper shows how the
Chaboche theory can be used to model the viscoplastic behavior of Inconel
718 at 1200°F. First, an algorithm has been developed to systematically
determine the material parameters of the Chaboche theory from uniaxial
tensile, creep, and cyclic data. The algorithm, however, is general and can

be wused 1in conjunction with similar high-temperature materials. A
sensitivity study was then performed and an 'optimal’ set of Chaboche's
parameters was obtained. This study has also indicated the role of each

parameter in modeling the response to different loading conditions. Based
on the 'optimal’ set of material parameters, uniaxial tensile, creep, and
cyclic behavior has been predicted. The results were compared to available
experimental data and the agreement was found to be good. Moreover,
predicted behavior of Inconel 718 at 1200°F under a variety of additional
loading conditions has been examined and relevant conclusions were drawn.

I. INTRODUCTION

For high temperature applications, such as those encountered in the
nuclear and aerospace industries, severe demands are generally placed on
candidate structural materials. These demands have led to the development
of a new class of structural materials called superalloys having
considerably improved elevated-temperature mechanical properties. One such

material is Incomel 718, which possesses several excellent properties such

t On leave from The Military Technical College, Cairo, Egypt.
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as creep-rupture strength, high-cycle fatigue strength, oxidation
resistance, and 1long time stability [1-3]. These properties are, for the
most part, due to the susceptibility of this material to precipitation
hardening and strengthening caused by coherent gamma prime precipitates.
These properties can be obtained by two different solution annealing and
aging procedures. A comparative study of the effects of both types of heat
treatment procedures on the tensile and fatigue behavior of Inconel 718 from
room temperature to 1200°F has been presented in Ref. [2]. It was concluded
that Inconel 718 subjected to the so called 'standard heat treatment’
exhibits higher resistance to stress rupture and fatigue. Therefore,
Inconel 718 in this condition is widely used in current production of gas
turbine engine components requiring relatively long service lives and
operating normally at high temperatures (1,4].

A large number of uniaxial monotonic, sustained, and cyclic tests have

been performed to obtain the mechanical properties of Inconel 718 at 1200°F

(1-9]. However, only a few of these tests address the strain-rate

sensitivity, with the result that no significant strain rate sensitivity
. -5 -1

could be observed for ¢ > 5x10 sec . At lower strain rates, tensile and

cyclic data were too limited to establish the rate sensitivity of this
material, although existing creep data do suggest the existence of some rate
sensitivity.

Domas, et al (4] have shown that the tensile and stabilized cyclic
stress-inelastic strain curves for Inconel 718 at 1200°F can be described by

the Ramberg-0Osgood form

o =K (en™, (1)
where ¢ and e" are the tensile stress and inelastic strain (or the stress at
the tensile tip of the stabilized hysteresis loop and the corresponding
inelastic strain amplitude), respectively, and K* and n* are material
parameters that depend on the heat treatment and strain rate. Values of K*
and n* for Inconel 718 (standard heat treatment) at 1200°F and for different
tensile and cyclic strain rates are listed in Table 1. The first five sets
of values were determined by Domas, et al [4], whereas the remaining values

were determined within a larger study [10], part of which is the present
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work. Available experimental data on the cyclic behavior of Inconel 718 at
1200°F have also indicated that this material cyclically softens for
approximately 10-20% of its fatigue 1life, followed by a period of near-
stabilization when damage mechanisms are activated. For convenience the
values of ¢ and e" used to evaluate the cyclic material parameters in Table
1 were those at Nf/2, where Nf is the fatigue life.

Inconel 718 at 1200°F displays classical creep response (primary,
secondary, and tertiary creep stages). The time to the onset of tertiary
creep is normally about 0.5 tr, where tr is the rupture life {1l1]. For
Inconel 718, however, the region of increasing creep rates following steady
state creep commences at about 0.3 t. (3]. This suggests that the
initiation of increasing creep rates may be due to softening and is not
necessarily a manifestation of the instability associated with tertiary
creep [3,6]. Thus, from a wunified viscoplastic theory view-point, some
provision for softening (or increasing creep rates) must be incorporated
into the theory. Booker [3,6] has developed a creep model in the form

0.2
€ EXP [1.75(tn -1)] . t , 0< t <1, (2)

which describes the salient features of the creep behavior of Inconel 718 at
o .

1200°F. In Eq. (2), €& e/etr is the normalized creep strain, t, - t/ttr

is the normalized time; provided that €or and ttr are the strain and time to

tertiary creep given empirically by

1.04

e, = 0392 % (3)
e, = 0.2 + 116 ¢ 01 (4)
The time to failure, tr’ is given by
log t_ = 163.92 + 23924/T - 226.92 log o
+ 94.196 (log 0)2- 13.215 (log 0)°, (5)
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where T is the temperature in °K and % is the hold stress in MPa. In Egs.
(2) thru (5), time is given in hours and strain in percent.

A few attempts have been made to model the behavior of Inconel 718 at
1200°F using unified viscoplastic theories, e.g., [7,8]. In this paper, the
Chaboche yield-based theory of -viscoplasticity [12,13] is used for the same
purpose. This theory can model a wide variety of rate-dependent inelastic
mechanical behavior, including monotonic, sustained, and cyclic responses.
It also models isotropic and kinematic strain hardening, including cyclic
hardening (or softening) and the multidimensional Bauschinger effect. This
theory has been employed to model the mechanical response of Inconel 100
[12,14], type 316 stainless steel [15,16], and Ti-6Al-4V alloy [17,18].
However, the theory does not account for the rate dependence of initial
yield, which 1limits its use to materials that do not exhibit such behavior
within the loading rates of interest. 1In a previous paper [19], the authors
have shown how rate dependency of initial yielding can be incorporated into
the Chaboche theory, without changing its general structure. The principal
objective of the current paper 1s‘to show how the extended theory can be
used to model the mechanical behavior of Inconel 718 at 1200°F. A major
part of this effort has been devoted to developing a systematic algorithm
" for the determination of the Chaboche material parameters from available
uniaxial test data. The need for a éystemacic procedure for determining the
material parameters of a viscoplastic theory from the results of standard
mechanical tests has been addressed {17,21].

A sensitivity study was then undertaken to explore the effects of
introducing small changes in the Chaboche material parameters on different
predictions and to obtain an 'optimal’ set of the material parameters that
globally improves the predicted behavior. The 'optimal’ set was then
incorporated into the Chaboche set of differential equations; and uniaxial
tensile, creep, and cyclic responses were predicted and compared to
available experimental data. In addition, strain-rate and strain-rate-
history effects, creep, stress relaxation, and the load-unload-reload

effects were predicted and examined.
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II. CONSTITUTIVE EQUATIONS

In the present paper, the one-dimensional form of the Chaboche theory
is presented and used; the three-dimensional form of the theory can be found
elsewhere (12,13]. A basic assumption of the theory is the decomposition of
the rate of deformation into rate-independent elastic and rate-dependent

inelastic components. For infinitesimal deformations, the strain rate, E,

approximates the rate of deformation, or
€ =€+ " o (6)

The linear elastic strain rate, 2', is obtained from the time derivative of

Hooke’s law, that is,
¢’ = o/E (7)

where o 1is the stress and E is Young's modulus. The nonlinear inelastic

strain rate, b , 1s based on the normality hypothesis and has the form

F n
[ﬁ] Sg(ag - Y), F >0,

o (8)
0; F S o’

where K and n are material parameters. F is the von Mises yield function
given by '
F(o,Y,p) = [0 - Y| - R(p), (9

where Y 1is the kinematic hardening variable, p is the cumulative inelastic

strain defined in terms of the inelastic strain rate by
t .
p - I le"] ar, (10)
0

and R 1is the isotropic hardening variable associated with p. Note that in

Chaboche'’s theory, as in most of the viscoplastic theories, two variables, Y
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and p, are employed to model hardening. Note also that F represents the
overstress, whose positive values signify the initiation of inelastic

deformations [c.f. Eq. (8)].
The evolution of the kinematic hardening variable is given by

Y = c(ae" - Yp) - v]Y|™ sg(v), (11)

where c¢,a,y, and m are material parameters. The first term on the right
hand side of Eq. (11) is the nonlinear Armstrong-Frederick modification of
Prager’s linear kinematic hardening rule, which is appropriate for c&clic
loading. The second term models softening effects such as reduced hardening
rate, secondary creep, and stress relaxation typically associated with
elevated temperatures. Equation (11) provides an effective tool by which
anisotropic hardening (Bauschinger effect) and creep/relaxation effects can
be appropriately modeled and represents one of the principal advantages of
the Chaboche theory. In its modified form [19], the isotropic hardening
variable, R, depends on the cumulative inelastic strain, p, and the total
strain rate, ;, rather than on p alone, as postulated in the original
theory. The dependence of R on ¢ is assumed to be limited to its initial
value, Ro’ that is,

R(p,&) = q + [R (&) - q] &P, (12)

where b and q are material parameters and Ro is the rate-dependent initial

yield strength.
III. DETERMINATION OF THE CHABOCHE MATERIAL PARAMETERS

In its modified form, the Chaboche theory incorporates eight
viscoplastic material parameters and the rate-dependent initial yield
strength ([c.f£. Eqs. (8), (11), and (12)], which are generally temperature-
dependent. It is now shown how these parameters as well as the function
RO(E) were determined from available experimental data of Inconel 718 at
1200°F. Some approximations and assumptions had to be made; these will be

discussed as they are introduced.
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Determination of a and ¢
The Chaboche flow law given by Eqs. (8) and (9), upon inversion, takes

the form
o -Y+R+K(2")1/n . (13)

At relatively high strain rates, the recovery term in Eq. (1ll) can be

neglected, thereby allowing it to be integrated as

-sc(e"-e;)
Y = sa + (Yo - sa) e ) (14)

where

+1, " > 0,

s = Sg(e") = . (15)
-1, e" <0,

and Yo and e; are the initial values of Y and ¢".
For the stabilized cycle of a strain-controlled cyclic test, R assumes
its saturation value q [c.f Eq. (12)], whereas Y alternates between two

extreme values, Y and Y - - Y . It can be shown that [10,12]
max m ma

in X

Y o= a(l-e che™y 1 + e %27y - 2 tanh(ce?) (16)
where e; = Ae"/2 is the stabilized inelastic strain amplitude. Hence, if a
series of stain-controlled cyclic tests are performed until stabilization
has occurred, a cyclic stress-strain curve can be established through the
tensile peaks of these stabilized hysteresis loops. Such a curve, within
the context of Chaboche’s theory, can be represented by use of Eqs. (13) and
(16) as

o= a tanh(ce;) + q + l((;")l/n , (17)

which, when differentiated with respect to e;, yields

n 2 " .
da/dea = a ¢ sech (cea) (18)

43



An alternative form for Eq. (18) can also be obtained by
differentiating Eq. (1), i.e.,

*
" % * " n - 1 .
do/de = n K (e?) (19)

Since values of K* and n* are available (c.f. Table 1), Eq. (19) can be used
to generate values of fi - da/de; for (e;)i, i=1,2,...,n. These values can
be wused to evaluate a and ¢ in Eq. (18). This is, in fact, a nonlinear
regression analysis problem. Draper and Smith [22] have shown how such a
problem can be solved based on the least squares technique. A computer
program based on their analysis has been developed and used to find the
values of a and c¢ 1listed in Table 1. The first and seventh sets are
considerably different from the remaining values. Therefore, these two sets
were excluded and mean values of a and ¢ were calculated for the remaining

sets as
a = 31.40 KSI, c = 349.5 . (20)

Determination of K and n

Since the material parameters K and n characterize the rate dependency

of the material response, they were evaluated from tensile data at different

strain rates. Two tensile stress-strain curves may be adequate for this
purpose. Figure 1 illustrates two stress-strain curves at strain rates of
€ and ;2, where € > € If it 1is assumed that these rates are

sufficiently high and close together, then Eq. (1l4) holds for Y, and R° can

be considered the same for both cases. Thus,

Y =Y , Y =Y , R =R , = , (21)
a1 b, b & Rbl sz
where al’aZ’bl’ and b2 are shown in Fig. 2.

From Eqs. (13) and (21), the stress differential may be written as

o 1/n e, \1/m
Ao = aa2 - aal = K [(682) - (Eal) ]. (22)
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which relates the difference in stress levels to the corresponding inelastic
strain rates at specific 1inelastic strain values. It 1is necessary,
therefore, to evaluate the inelastic strain rate at different points on both

curves using the equation
L] L] L] L] L] L] *
N mt .t =t - G/E e - e(%f)/a -1 - E/E, (23)

*
where E = do/de 1is the instantaneous slope of the stress-strain curve.
Equation (1), along with the integrated form of Eq. (6), can be employed to

obtain the relation

i
ﬁf % * ek [EﬁJ ’ 24

*
Note that the inverse of this equation is E . Therefore, Eqs. (23) and (24)

can be wused to calculate values of 2; and E; in Eq. (22), and Aaa can be
1 2
obtained by applying Eq. (1) independently to curve 1 and curve 2 of Fig. 1.

Then, K and n in Eq. (22) are evaluated using a nonlinear regression
procedure similar to that used in evaluating a and c. The tensile data of
Table 1 were used for this purpose, and the following values of n and K were
obtained

n = 5.12, K = 154.4 KSI "|sec . (25)

Determination of b and g

Once a, c, n, and K have been obtained, b and q can be determined from
the results of one strain-controlled cyclic test, such as that reported in
Refs. [7,9] at |e| = 2.667x10°> sec™! and ¢ = + 1%. At the tensile tip of a

hysteresis loop, Eqs. (13) and (16) can be combined and solved for R as
R = o - atanh(ce!) - k(em)/m, (26)

and p can be calculated from

n
- e1/2+2 T Ael (27)
=2

Py
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where n represents the n-th cycle and Ae; represents the inelastic strain
range at the 1i-th cycle. Equations (26) and (27) were then used to
calculate R and p values from the strain-controlled test discussed above,
with the results given in Table 2. 1In these calculations the overstress,

K(E")l/n, was assumed to be constant, since the slopes of the loops at their

peaks were relatively constant. The value of e" was calculated from Eq.
(23) to be 2.465x10-3 sec-l, from which the overstress was determined to be
47.73 KSI. Since the available results did not include records of all

hysteresis loops, 1t was assumed that a missing loop had the same value of
Ae" as the first preceding available 1loop. Table 2 shows that R had
essentially saturated by the 32nd cycle. The corresponding value of R was,

therefore, taken to be the saturation value, i.e.,
q = 18.63 KSI (28)
A value for b was then determined from the slope of the line

In(R-q) = 1n(R -q) - bp, (29)
to be
b = 4.679 (30)

Determination of Ro

In a previous paper [19], the authors have shown how the Chaboche
theory can be modified to account for the rate-dependent initial yield
response and permit prediction of creep behavior at low stress levels. In
effect, the function Ro(;) in Eq. (12) had to be evaluated. Based on the
analogy between tensile and creep responses [23] and the creep data base of

Ref. (8], a form for RO(E) was selected as

3 .
R - R {1 + ln{l + EXP[ 1§o ai(lné)l]}} , (31)

where R__=q=18.63 KSI, a =25.56, a =4.551, @,=0.3360, and a,=0.8375x10"2, as

shown in Ref. [19].
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Booker’'s creep model [c.f. Eqs. (2-5)] was used to evaluate the strain
at the initiation of steady-state creep needed for these calculations. This
was achieved by differentiating Eq. (2) twice with respect to time, equating
to zero, solving for tn’ and then substituting back into Eq. (2) to obtain

the required strain values.

Determination of m and vy
It has been shown in Ref. [17] that hardening is mostly kinematic

during primary creep, because of the relatively high value of the ratio of
the hardening exponents c¢ and b [c.f. Eqs. (12) and (13)], and because of
the small amount of inelastic strains that are likely to have accumulated.
Therefore, it can be assumed that R = Ro = constant at the attainment of
steady-state creep. During secondary creep, ¢ = ¢" = constant, and the time

derivative of Eq. (13) reduces to
¥ -cay) e - ' -0, (32)

where ;ss is the steady-state creep rate. Equation (32) can also be written

as
1n[c(a-Y) ESS] =m 1nY + lny, (33)

which represents a straight line whose slope is m and intercept is 1ln y. 1In
this equation, Y can be calculated from Eq. (13) with R = Ro' The data of

Ref. [8] for small creep stresses, where the recovery effects are
significant, were used to evaluate y and m as
-10
v = 0.4x10 , m=6.942 . (34)

To conclude, a procedure has been developed to evaluate the material
parameters of the modified Chaboche theory of viscoplasticity from uniaxial
tensile, creep, and cyclic test data. Since these tests were not
specifically designed for the purpose of determining the Chaboche
parameters, the procedure employed herein to determine these parameters is

not unique, but appropriate for the kind of data available. However, the

procedure is general and can be employed to determine the Chaboche

47



parameters for any similar material. Values of the parameters are listed in
Table 3. Based on these values, predictions of a tensile test at € =

1.333x10-ssec-1, a creep test at 130 KSI, and a strain-controlled, fully-

reversed cyclic test at |2| - l&xlO-ssec‘1 and A¢ =~ 2% are shown in Figs. 2

to 4, respectively, along with available experimental data for comparison.
IV. SENSITIVITY STUDY

Although the predicted and actual responses are in reasonable
agreement, it was anticipated that better agreement could be achieved by
modifying the parameter values. Therefore, a parametric study was
undertaken to explore the sensitivity of each of the parameters to the
overall predicted behavior of Inconel 718 at 1200°F, and thus lead to the
determination of an ‘optimal’ modeling of overall material response. To
perform such a multi-parameter optimization, it 1s necessary to have a
complete and accurate set of experimental results of specific base-line
tests, These tests should be chosen 1in such a way that all aspects of
material behavior to be modeled by the theory are represented in the test
data. Such a data set is not available for Inconel 718 at 1200°F, partly
because of the expense of such testing, but also because existing test data
were not acquired for the purpose of evaluating Chaboche’s model.
Therefore, it has been necessary to work with available data sets that are
not adequate for the present purpose.

With this in mind, the data base of Ref. [8], which consists of tensile
and creep test results only was employed to perform the parametric study.
Then this data base was enlarged by including cyclic data from Ref. [4].
The first step of the parametric study consisted of varying the parameters,
one at a time, by 7% of the value listed in Table 3, predicting the
corresponding material responses, and comparing these predictions with the
selected data base. Because of space limitations, only representative
samples of the results of this step are shown in Tables 4 to 6 , along with
corresponding experimental data. A thorough examination of the results of
this step of the parameteric study has led to the following observations:

(a) Some parameters have stronger effects on material behavior than

others, in decreasing order, Ro' n, k, and m have the strongest effects.
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(b) Whereas a material parameter or a subset of the parameters has a
strong effect on a certain facet of material behavior, it does not
necessarily have the same effect on a different aspect of material behavior.
For 'instance, Ro had a strong effect on the creep behavior; however, it had
less effect on the tensile and cyclic behavior.

(¢) Creep response seems to be the most sensitive to changes in
parameter values. For instance, changing Ro by +7% results in approximately
one order-of-magnitude change in the minimum creep rate value.

(d) Increases in b, 7y, and m increase the minimum creep rate and the
inelastic strain range, and decrease the saturation stress, whereas the
other remaining parameters have the opposite influence.

Based on these observations, it was decided to extend the parametric
study for the parameters that strongly affect the material behavior by
reducing the amount of change from +7% to #3.5% for n, K, and m and to
+5.25, 3.5, and 1.75% for Ro, since it seemed to be the most influential.
Representative results of these changes are also included in Tables 4 to 6.
These results support the previous observations in that they confirm that
the overall material behavior is most sensitive to variations of Ro' For
example, a change of #1.75% in Ro changes the minimum creep rate by about 50
to 100%. Thus, the results of the current parametric study verify that the
modification introduced to Chaboche’'s theory, i.e., considering Ro to be a
function of the strain rate, is of critical importance for improving the
accuracy of this theory.

Although the results of this parametric study have shown that the
cyclic material response (first cycle Ao and A¢") is not strongly affected
by small changes in b and q, the influence of these parameters is best
exhibited by studying the complete cyclic behavior and not just the first
cyecle. Unfortunately, the only cyclic test available for this material is
the one previously used to determine values of b and q. This test was
conducted at |E| - 2.667x10'3 sec-l, a value which is well above the limit
of rate sensitivity for Inconel 718 at 1200°F - estimated to be about 4x10-5
sec_l. Thus the results of such a test should not be used to determine the
material parameters. Problems also arise in attempting to use Chaboche’s
theory to predict a rate-insensitive response, since it is basically a rate-

dependent plasticity theory. This problem was demonstrated by predicting
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the cyclic behavior at |;| - 2.667x10-3 sec-1 and ¢ = +1% for the first
several cycles. The results showed that the stress was initially
overstimated and the 1inelastic strain was underestimated. Also, the
predicted cycles softened at a higher rate than actually observed, which
suggests that b and q must be re-evaluated.

To best accomplish such a task, the hysteresis loops from a cyclic test
at IEI < l;xlO-5 sec-1 are needed. Such data, however, are not available*,
and it was hypothesized by virtue of the material rate insensitivity for

¢ > l»xlO-5 sec-1 that the results of a cyclic test at |;| - 2.667x10.3 sec-1

-5 -1
are essentially the same as a test at |;| =4x10 ~ sec ©. 1In effect, values
of R have been recalculated and the new estimates of the material parameters

b and q were found to be
b = 3.75, q = 50 KSI » (35)

It was also found that by rounding off the values of a, ¢, K, m, and n,
i.e.,
a » 30 KSI, ¢ -+ 350, K » 155 KSI"|sec, m =+ 7, n - 5.1, (36)

insignificant effects on the predicted behavior were observed. Therefore,
these values will be considered 1in the remainder of this work to be the
'optimal’ values.

The final step in the optimization procedure was to change the form for
RO(E) such that the best possible agreement could be obtained between
experimental and predicted behavior. First the values of Ro that gave best
prediction of overall behavior were determined and are shown in Ref. [19].

Then, an improved expression for Ro was established as

5
R =R {1 + 1n {1 + Exp[igo pi(lné)i]}} ’ (37)

where Roo- q = 50 KSI, ﬂo - 48.88, ﬂl - 18.30, ﬁ2 -2.767, ﬂ3 = 0.2082,

B, = 0.7813x10°2, and B, = 0.1174x10>.

*
Contacts were made with ORNL to obtain the cyclic data from the tests
reported in Refs. [2,5] but it was indicated that they were not available.
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The revised material parameters of the extended Chaboche theory are
listed in Table 3, and were employed to improve the material response

predictions in Figs. 2 to 4.

IV. PREDICTIVE CAPABILITIES

The Chaboche theory has been employed to predict a wide range of
additional mechanical behavior of Inconel 718 at 1200°F, including: strain-
rate and strain-rate-history effects, cfeep and relaxation behavior, load-
unload-reload behavior wunder strain or stress control, and strain-

controlled, fully-reversed cyclic behavior.

Strain-Rate and Strain-Rate-History Effects

Three different strain rates; namely, ;1 - leo-ssec_l, 22 -
5x10-7sec-1, €, = 5x10'9sec'1, have been arbitrarily considered in studying

3
the strain-rate effect. The stress-strain curves at these rates are shown

in Fig. 5, which shows a rate dependency of initial yield that could not be
predicted by the original Chaboche theory. This figure shows that the
extended Chaboche theory predicts a pronounced strain rate effect for the
strain rates considered. It 1is also noted that the stress-strain curves
tend to be closer to each other as ¢ increases. This behavior is consistent
with the experiments, which have shown that an asymptotic behavior can
eventually be reached.

A similar stress rate effect was predicted for three stress rates,
obtained by multiplying the aforementioned strain rates by Young's modulus,
as shown in Fig. 5. It is seen that the stress-controlled response
overrides the strain-controlled response, the difference being attributed to
the stress-strain nonlinearity of the constitutive equations.

The response of viscoplastic materials is significantly influenced by
their strain rate history [24,26]. Perhaps the most useful and widely used
experiment developed to study this behavior is the incremental (jump) test,
where a specimen is first prestrained at one strain rate and then the strain

rate 1is abruptly changed to another value. A material is said to exhibit a
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strain-rate-history effect if the jump (interrupted) and monotomic (pure)
responses remain distinct after significant strains have been imposed [21].

Let the constant strain rates before and after a jump be denoted

E and 2
1 2’
rate 1increase, 0 < § < 1 corresponds to a strain rate decrease with

respectively, and let § = ;2/;1; where 6§ > 1 indicates a strain

increasing strain, and 6§ < 0 implies strain rate reversal (unloading), Fig.

6. It can be shown that [27]

*

E)

1 *
= E - 6(E - El) y (38)

here E. and E.
where 2 an 1

*
and after the strain rate jump is imposed. If it is further assumed that E1

are the slopes of the stress-strain curve immediately before

*
<< E, it follows that E2 = E for § >> 1. In other words, the initial

response after the strain rate increment is imposed 1is elastic, as

experiments show. In case of stress-rate jumps, the analogue of Eq. (38) is

* 1 {E -1
- - =% .
g, -k 142 [El 1] I (39)
where v = 52/&1 is the ratio of the stress rates [27].

Figure 7 shows the predicted monotonic responses at ;1 =10 sec and

22 - 5x10-5 sec-1 as well as the corresponding interrupted responses for
§ = 50 (low-to-high strain rate) and § = 0.02 (high-to-low strain rate)
after a prestrain of 0.75%.

For tensile loading, the saturation stress can be reached when each of
the terms on the right hand side of Eq. (13) saturates. Numerical exercises
with the Chaboche theory, however, have shown that R does not change
substantially when small deformations, such as those produced during a
tensile test, are considered, i.e., R = Ro‘ Thus, the hardening process is
essentially kinematic, and, in the presence of recovery, the saturation
value of Y 1is smaller than a and can be determined by solving Eq. (32).
This equation shows that the saturation value of Y is solely dependent on
the strain rate and is, therefore, strain-rate-history independent. The
difference observed in predicted monotonic and interrupted behavior is, thus
caused by different values of R = Ro in the monotonic and jump tests.

Since Ro increases with E, the jump response lies below the uninterrupted
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response for § > 1, i.e., the theory predicts a strain rate history effect
typical of FCC materials {26]. Due to its treatment of Ro as a constant,
the original Chaboche theory cannot predict strain-rate-history effects.

Prediction of the creep behavior of Inconel 718 at o = 140 KSI, for
load application rates of 51 = 20 KSI/sec and 52 = 0.20 KSI/sec, are
presented in Fig. 8. In each case, the response from the moment of loading
until the stress reached its hold value was predicted as well as the
response for an additional 300 sec, with only the creep strains shown in
Fig. 8. It was found that the creep strain corresponding to the higher
stress rate overrides that corresponding to the lower rate. However, the
total strain (not shown in Fig. 8) in the latter case was greater. This was
expected, since at the 1lower stress rate, yielding initiated at a stress
value much lowgr than o - 140 KSI and by the time the stress value reached
the hold wvalue substantial hardening had already taken place. Thus, the
material was capable of sustaining further deformations only at lower rates.
These results suggest the importance of specifying the rate of load
application, in addition to the hold stress, when reporting creep data.

When steady-state creep is reached, Eq. (13) yields wupon
differentiation with respect to time

Y=R=0, or Y- -R. (40)

For tensile creep, Y is positive, and Eq. (40)b is valid only if R is
negative, 1i.e., when the material undergoes isotropic softening. Numerical
solutions have shown that Inconel 718 at 1200°F starts to harden
kinematically and soften isotropically with the initiation of creep
deformations, with the rate of hardening being higher than the softening
rate. However, a point is eventually reached where both rates are equal in
magnitude. At this point Eq. (40)b is satisfied and thereafter softening
begins to dominate, thus allowing for increasing strain rates, as Fig. 9
depicts for creep at 125 KSI. As mentioned earlier, there is experimental
evidence that the increasing creep rates, at least in early stages, are not
a manifestation of instability or impending failure [3,6]. Therefore, it is
concluded that the Chaboche theory can predict realistic creep behavior,
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including increasing creep rates following steady-state creep, caused by

material softening.

Relaxation Behavior

In a stress relaxation situation, Eqs. (6) and (7) give
o0 = - Ee" » (41)

If the stress relaxes from a positive value, e" is initially positive and o
is, therefore, negative. Experimental data on metals and alloys show that
the stress normally relaxes at a decreasing rate until a steady state is

eventually reached when o =0, i.e., when
o=Y+ R (42)

To examine the stress relaxation prediction of the Chaboche theory, a
loading history was chosen, which consisted of straining at a rate of 5)~110-5
sec'l to 1% strain. The strain was then held at this value for 50 minutes,
The results are shown in fig. 10, and are consistent with the above

discussion.

Load-Unload-Reload Behavior

A reversal in strain (stress) corresponds to an instantaneous jump in
2(5) with 6(y) < 0. Three different cases can be distinguished (c.f.
Fig.6): (a) 8§(y) = -1, which corresponds to a reversal with constant strain
(stress) rate magnitude, (b) §(y) << -1, which represents a large increase
in the strain (stress) rate magnitude, and (c) 1/6(y) << -1, which
represents a large decrease in strain (stress) rate magnitude upon
unloading.

The loading-unloading behavior of Inconel 718 at 1200°F is now studied
under strain (stress) control in a fashion similar to that of Ref. [28].
For strain control, a loading rate of ;o - 5x10" sec™! was arbitrarily
selected, along with wunloading rates of 21 - -5x10'5 sec-l (61--102<<-1),
22 - -5x10"7 sec™t (8,=-1), 23 - -5x10"7 sec’! (63--10‘2, or 1/53--102<<-1).

In each case, unloading was initiated after a strain of 0.75% was reached,
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where EI << 1, as was assumed in deriving Eq. (38). The results are shown
in Fig. 11, where it 1is seen that the 1initial unloading behavior is
inelastic and 1is sensitive to §. For a large increase in the strain rate
magnitude at reversal, the terms with 1/§ in Eq. (38) are negligible and E;
= E, 1.e., the initial unloading response is elastic, which is in agreeement
with the predicted behavior shown in Fig. 1l for §, = -102. For &, = -1,

*
Eq. (38) gives E, = 2E, which means that the initial unloading response is

2
inelastic. Figure 11  Thowever, shows that the slope very rapidly
approximated E as the stress decreased. For large decreases in strain

rate magnitudes at reversal, the terms with 1/§ dominate and E; =~ E/|§].
Therefore, significant inelastic unloading response with a very large
positive slope was predicted, resulting in near-vertical decay of the stress
at the start of unloading. The inelastic strain increased when 63 - -10'2
was imposed, and can be thought of as stress relaxation, since the stress
decreases at almost”ébnstant strain.

For stress control, the stress rates were obtained by multiplying the
prior strain rates by E. In each case, the loading period was adjusted so
that a strain of 1% was obtained before unloading was started. The results

*
are shown in Fig. 12, For vy<<-1, Eq. (39) yields a value of EZ-E' i.e., the

initial unloading response 1is elastic, as Fig. 12 depicts for 7 - -102.
For Ty = -1, the initial slope upon unloading can be found from Eq. (45) to

* *
be E2 - -El,
negative slope that is equal in magnitude to the slope before unloading. As

i.e., the 1initial unloading response is inelastic with a

the stress decreases, however, the unloading response approaches a linear
shape typical of elastic unloading, as shown in Fig. 12. For 1/v<<-1, Eq.
*

(39) reduces to E2 - -

negative and much smaller in magnitude than the slope before unloading. The

|1|EI. Consequently, the initial unloading slope is

theory, therefore, predicts significant inelastic unloading behavior with
small decreases 1in stress and very large increases in inelastic strain, as
shown iIn Fig. 12, for 73 = -10'2. This latter case is analogous to a creep
test, where the stress is held almost constant while the strain increases
substantially.

The analysis was further expanded by studying the effect of unloading
rate on subsequent reloading behavior. Two cases were considered: (a)

loading, unloading, and reloading at |e| = leo'ssec'l, and (b) loading and
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reloading at 21 and unloading at 22 - -Sx10-7sec-1. In each case, loading
was applied until a strain of 0.75% was reached, unloading was initiated and
maintained to a strain of 0.45%, and finally loading was continued to a
strain of 1.0%. The results are shown in Fig. 13 for both cases. 1In the
first case (6§ = -1 at wunloading), the initial slope upon unloading is
positive and twice the elastic response, 1i.e., the initial response is
inelastic. However, it rapidly approximates the linear elastic response
and, therefore, the reloading response immediately approaches the monotonic
response at the loading rate. 1In the second case (§ = -10-2 at unloading),
however,significant inelastic deformations occurred upon unloading and the
consequent reloading response at 21 was considerably different from the
monotonic response at the same rate. Note that differences in reloading
behavior in the two cases are due essentially to the amount of inelastic
deformations that occurred upon unloading. It is possible to conclude,
therefore, that the Chaboche theory is capable of simulating a history-
dependent reloading response that memorizes rate-dependent prior

deformations.

Cyclic Softening

As mentioned earlier, Inconel 718 at 1200°F undergoes cyclic softening
for approximately 10-20 $ of 1its fatigue 1life. In Chaboche’s theory,
cyclic softening is modeled by the isotropic hardening variable R, with its
saturation value q smaller than 1its initial wvalue Ro' The first few
hysteresis loops of a strain-controlled, fully-reversed cyclic test at |;| -
l;xlO'5 sec'1 and Ae = 2% were predicted and are shown in Fig. 14. 1In this
figure, cyclic softening is manifested by a continuous decrease in the
stress range and a corresponding increase in the inelastic strain range with

cycling.
V. CONCLUSIONS

The modified Chaboche theory of viscoplasticity has been employed to
model the viscoplastic behavior of Inconel 718 at 1200°F. A procedure has
been developed and used for the determination of the material parameters of

this theory from available uniaxial experimental data of standard mechanical
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tests. The procedure for determining the parameters is not unique, but is
considered appropriate for the available data, which were not adequate for
the purpose of evaluating the Chaboche material parameters.

The sensitivity study undertaken herein has resulted in an ’‘optimal’
set of material parameters, which gave better overall agreement between
theory and prediction. The study has also emphasized the influence of each
material parameter on different aspects of material behavior.

The predictive capabilities of the theory have been demonstrated for a
variety of wuniaxial loading conditions. The lack of adequate data base,
however, precludes drawing detailed conclusions about the accuracy of the
predicted behavior. Nonetheless, the Chaboche theory appears to offer a
considerable promise for successfully modeling viscoplastic material

behavior.
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* *
Table 1: Values of K, n, a, and ¢ for Inconel 718 at 1200°F

Strain No. of
Ser. Rate, Data K* n* a c
No, Ref., _Test Sec’ Points _KSI KSI
1 4 cyclic 8.333x10:g 4 202.3 0.1080 24.46 364.4
2 4  eyelic 3.333x10_2 3 188.7 0.1100 31.81 347.0
3 4  cyclic 1.667x10_3 4 156.6 0.0920 33.86 349.0
4 5 cyclic 4.000x10_3 12 188.2 0.1078 31.49 349.1
5 2  cyclic l&.OOOxlO.3 37 172.2 0.1017 28.13 355.0
6 2,5 cyclic A'OOOX10-3T 49 187.9 0.1096 31.64 347.5
7 9 cyclic 2.667x10_4 3 214.9 0.1562 39.97 301.5
8 4  tensile 1.670}(10_5 166.9 0.0540  ---- ----
9 4 tensile  3.330x10 210.0 0.0630 ---- ----
Some tests were performed at ¢ = 10"% sec™! and 10 7sec”
Table 2: Calculation of R and p for the determination of b and q
Cycle o e T P Y R
No, KSI 3 KSI KSI
1 115.0 0.530 0.0265 28.57 39.04
4 109.8 0.546 0.0907 28.71 33.32
8 105.4 0.561 0.1568 28.84 28.83
12 102.4 0.561 0.2247 28.95 25.72
16 101.0 0.588 0.2942 29.04 24.25
20 99.42 0.588 0.3648 29.04 22.66
24 98.43 0.588 0.4354 29.04 21.67
-28 97.43 0.588 0.5059 29.04 20.67
32 95.44 0.591 0.5766 29.06 18.66
36 95.44 0.596 0.6477 29.09 187.63
40 95.44 0.596 0.7192 29.09 18.63

1.Inelastic strain amplitude, Ae"/2
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Table 3: Material parameters of Chaboche'’s theory, Inconel 718 at 1200°F
Para- Initial Optimal
meter Description Value Value

E Young’s modulus 24.73x10" > 24.73%10°"3

v Poisson's ratio 0.3356 0.3356

a Saturation value of kinematic 31.40 30.00
hardening variable

c Kinematic hardening exponent 349.5 -10 350.0 .10

¥ Coefficient of recovery 0.4x10 0.4x10

m Recovery exponent 6.942 n 7.000 n

K Overstress parameter 154.4 KSI |sec 155.0 KSI Jsec

n Strain rate sensitivity parameter 5.120 5.100

q Saturation value of isotropic 18.62 KSI 50.00 KSI
hardening variable

b Isotropic hardening exponent 4.679 3.75

R Initial, rate-dependent value of Eq. (31) Eq.(37)

isotropic hardening

Table 4: Effect of changing n by +(3.5, 7.0)% on tensile behavior,

Inconel 718 at 1200°F

Strain

Rate

Sec'1

1.1x10°¢

1.3x10°°

Saturation Stress, KSI

Exper. Predictions

0.930n 0.965n n 1.035n 1.70n
134 128.28 129.20 130.18 131.12 132.33
142 143.57 144 .85 146.23 147.62 148.90
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Fig. 1. Illustration of two stress-
inelastic strain curves at
different strain rates.
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An Internal Variable Constitutive Model for the Large
-Deformation of Metals at High Temperatures

Stuart Brown and Lallit Anand
Massachusetts Institute of Technology
Cambridge, Massachusetts

Elevated temperature deformation processing, “hot working,” is central to the pro-
duction of more than 80% of all metal products. The advent of large deformation finite
element methodologies is beginning to permit the numerical simulation of hot working pro-
cesses whose design until recently has been based on prior industrial experience. Proper
application of such finite element techniques requires realistic constitutive equations which

more accurately model material behavior during hot working.

The constitutive equations should satisfy several requirements. First, the equations
should be able to model large, three dimensional deformations. Second, the model should
encompass the range of hot working conditions, which includes strain rates ranging from
1073 to 10! sec=! or greater, homologous temperatures from .5 to .9, and interrupted de-
formation histories. Third, determination of parameters associated with the model should
be straightforward and require a minimum of materials testing. Fourth, the model should

provide a means of representing material microstructural state and its evolution during

deformation. Finally, the model should be formulated with due consideration of issues

regarding their numerical implementation in finite element programs.

A simple constitutive model for hot working which satisfies most of these require-
ments is the single-scalar internal variable model for isotropic thermo-elasto-viscoplasticity
proposed by Anand [1985,1982]. In the next section we recall this constitutive model. The
specific scalar functions for the equivalent plastic strain rate and the evolution equation for
the internal variable presented here are slight modifications of those proposed by Anand
[1982]. These modified functions are better able to represent high temperature material

behavior. Following this presentation of the constitutive equations we briefly describe
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our monotonic constant true strain rate and strain rate jump compression experiments
on a 2% silicon iron. The material parameters appearing in the constitutive model can
be determined from the stress-strain curves resulting from such experiments. The model
is implemented in the general purpose finite element program ABAQUS [Hibbitt, et.al.,
1984]. Finally, using this program, the predictive capabilities of the model are evaluated

for some simple deformation histories.
Constitutive Model

(2) Stress-strain-temperature rate relation:
TV = £|D - DP] - 114, 4 (1)

where with T denoting the Cauchy stress and F denoting the deformation gradient,

T = (detF)T Kirchhoff stress;
v = 'i‘ -WT+TW Jaumann derivative of Kirchhoff stress;
L=2u] +|r~(2/3)uj1®1 Elasticity tensor;
p=Ad), ~=Rr(0) Shear and bulk moduli;
IT = (3xa)1 Stress temperature tensor;
a Coefficient of thermal expansion;
D = sym FF-1 Stretching tensor;
W =skew FF-1 Spin tensor;
0 Absolute temperature.
(b) Flow rule:

The constitutive equation for D? is:
pr=% (g%) , (2)

where

&= f(6,0,8) >0, 6<s equivalent plastic tensile strain rate,

G=4/(3/ 2)T' - T/ equivalent tensile stress,
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and s is a scalar internal variable with the dimension of stress. We call it the de-
formation resistance which may be associated with a microstructural characteristic

such as dislocation density.

(¢) Evolution equation:
The deformation resistance s is assumed to evolve according to:
é=h(5,0,8)& ~#(0,s),

where h represents strain hardening (with dynamic recovery) and f represents static

recovery.

The major task in completing the constitutive model involves a specification of the
rate equation f above and the evolution equation for the internal variable s. We propose

the following model:

& = Aexp (-§) [sinh (€2)]/™, 5 <5, (3)
§=ho[<1-—(s/8*)>]*, a21, (4)
with

=3 %":exp(%)]n (5)

In this model the material parameters are A,Q, £,m, ho, ¢, 3,and n, and k is Boltzmann’s

-constant.

The static recovery function # in this model is set equal to zero. Accordingly, these
equations are unable to mode! recovery during hold periods between high rate deformation

passes or during very slow deformation processing.
Compression Experiments on a 3% Silicon Iron

Isothermal hot-compression tests have been performed to evaluate the material
constants associated in the above model. A 2% silicon iron was selected since it does not

dynamically recrystallize and since it does not experience a change in crystal structure
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upon quenching from elevated temperature deformation. Tests were performed on a high
temperature materials test system consisting of a vacuum furnace mounted in a servo-
hydraulic test machine. An analog function generator was used to produce constant true
strain rates and strain rate jumps. Data was collected on a microcomputer data acquisition

system.

The test specimens were circular cylinders with a height-to-diameter ratio 1.5. Shal-
low, concentric, circular grooves were machined into the ends of each specimen to hold a
high temperature lubricant. Lubricants were mixtures of powdered glass and boron nitride
powder. Homogeneous compression to a true strain of approximately -1.0 was achievable

on a routine basis.

Two sets of experiments were performed: isothermal, constant true strain rate tests
and strain rate jump tests. The constant true strain rate tests were performed for a
range of temperatures from 800 to 1200 degrees Celsius, and a range of strain rates from
10~3 to 10° per second. Figure 1 provides a representative subset of these tests for a given
temperature at varying true strain rates. Strain rate jump tests were performed to provide
means of evaluating strain rate dependence at a given internal state, because such a test
instantaneously decouples the strain rate equation (3) from the evolution equation for the
internal variable (4). Figure 2 shows a representative series of juinp tests at a constant
temperature. The stress/strain data following the jump in strain rate also provides data
for an independent comparison of the constitutive model predictions and actual material

response.
Material Constant Determination and Model Evaluation

Material constants for the model represented by equations (3) to (5) have been
determined using data obtained from the constant true strain rate and strain rate jump
tests. The equations have been incorporated using procedures outlined by Anand [1986]

via a user-material interface in the finite element program ABAQUS. Stress-strain curves

72



have been calculated using ABAQUS for conditions representative of the experiments on
the silicon iron. The calculated curves are compared with the experimental data in Figures

3 and 4. The agreement between the theory and experiment is excellent.

Several test specimen geometries have also been evaluated which produce a gradient
of internal microstructure within a single deformed specimen. These specimens have been
deformed at temperature and then quenched. Different measures of microstructure, such as
microhardness and etchpit density, have been compared with the variation in the internal

variable predicted by the constitutive model.
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The nonlinearly viscoelastic response of an amorphous homopolymer is considered
under aspect of time dependent free volume behavior. In contrast to linearly viscoelastic
solids, this model couples shear and volume deformation through a shift function which
influences the rate of molecular relaxation or creep. Sample computations produce all
those qualitative features one observes normally In uniaxial tension including the rate
dependent formation of a yield point as a consequence of the history of an imposed pres-
sure.

1. INTRODUCTION

It is a well known fact that polymers change their physical response characteristics in a
very significant manner when they are cooled or heated, and especially so when the
temperature change spans the glass transition range. This behavior is exemplified,
perhaps, most clearly in terms of mechanical relaxation or creep phenomena, though it is
equally evident in optical, electrical and masstransport characteristics. These macroscopi-
cally observable phenomena are manifestations of the motion of segments of molecule
chains relative to each other. This motion is controlled by both the thermal activation of
the molecule segments and by the space available to these segments to move. This space
is often associated with the concept of "free volume” and has a highly non-linear effect
on the segment mobility in the sense that a change has a roughly exponential effect on
the rate of segment motion. Thus small changes in free volume will produce very large
changes in the mobility of molecule segments, and thus in the physical characterstics of
the material.

The change in free volume has been most often connected with thermal changes where
it has been associated with time-temperature trade-off in material characterization.
However, volume changes arise not only from temperature alterations but also from the
absorption of solvents and from mechanical stresses. The latter effect has been studied
mostly in the context of the influence of pressure on the glass transition temperature.

Volume changes in polymers can occur over considerably long time scales, and it is a
characteristic of these materials that the approach to equilibrium conditions occurs under
ever decreasing rates of change. Thus equilibrium behavior of polymers is often only
approached but not reached, in particular at temperatures below the glass transition
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range. Thus Struik [1]! has observed that creep (or relaxation) behavior of polymers
below the glass transition keeps changing for some time after the material has been
quenched to the "rigid" state. This change is first rather rapid after quenching and slows
down with time to a steady behavior and occurs at a rate that is consistent with the
decreasing free volume as it adjusts slowly to equilibrium conditions. The idea here is,
that the quenching process ellicits a delayed volume consolidation which entails a lower
and lower rate of molecular mobility.

While there seems to be little question regarding the qualitative correctness of
these concepts, there is still considerable discussion with respect to the analyti-
cal representation or description of these processes. A particular stumbling block in
this context seems to be our lack of understanding or experimental assessment of
how the free volume approaches equilibrium conditions. On the one hand one finds that
the appropriate experiments demand a very high degree of accuracy in volume measure-
ments over long periods of time under extremely well controlled environmental condi-
tions, while, on the other hand one needs to model and represent this behavior analyti-
cally in order to ascertain whether the postulated, physics-based model conforms to the
measurements. Neither propositions are accomplished easily.

In this paper we shall be concerned with the mechanical behavior of polymers which
undergo densification (vitrification) while simultaneously subjected to mechanical strain-
ing. In view of several unresolved issues with respect to representing the time-
dependent effects of the quenching process we confine ourselves for now to vitrification
resulting from the imposition of pressure. The work is almost exclusively computational
in nature, based on the experimentally determined uniaxial relaxation behavior which
corresponds to that of Solithane 113 (50/50 composition [2]), a polyurethane elastomer
manufactured by the Thiokol Chemical Company in Trenton, N.J. The computations were
motivated by high pressure experiments on the same material by K. Pae et alii [3], who
appear to have used a somewhat differently formulated or processed version of the same
material, which did not allow a point by point comparison. We offer these computations,
therefore, as an indication of what the effect of time-dependent volume consolidation is on
the subsequent mechanical behavior of the polymer. These results are in qualitative
agreement with Pae’s experiments.

2. THE MOLECULAR MECHANICS VIEW

In order to relate the following developments to the proper view of molecular
mechanics it is appropriate to give consideration to how the molecular motion is
related to the material properties when linearly viscoelatic behavior is involved
and when the stress state induces non-linearly viscoelastic response. We start with
the proposition that molecular conformations of the molecule chains and the interdepen-
dent motion of their segments give rise to the macroscopically observed time-dependent
behavior. Short-time response derives from near-range interactions while the long-time
behavior is governed by long-range interactions with a spectral distribution spanning the
whole range of time dependence. As long as the macroscopic deformation gradients
(strains) are so small that the molecular topology is not disturbed greatly, (not rubber-like

1. Numbers in brackets refer to references at the end of the paper.
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deformations), one can argue that the molecular interactions as characterized by the
spectral distribution functions of relaxation or creep remain essentially unchanged. Stat-
ing this assumption is an alternate way of saying that molecule segments move accord-
ing to the local constraints offered by neighboring molecules; their rate of motion is
governed by their mutual proximity but the type of motion such as slippage or rotation
are not affected strongly. Thus one expects that the distribution functions appropriate
for infinitesimal deformations, i.e. linear viscoelasticity, apply. Specifically, we assume that
this understanding holds for both viscoelastic response in shear and volume deformation.

One must admit that our knowledge of molecular motion under a variety of deforma-
tion gradients is rather limited. Thus it is sometimes suggested, in particular in connec-
tion with thermal changes below the glass transition temperature, that certain types
of molecular motions cease to occur the lower the temperature becomes. In terms
of a phenomenological description such changes would entail changes in the spectral dis-
tribution functions. However, in order to investigate such potential changes it Is
necessary to develop improved descriptions of constitutive behavior, and it is just that
purpose we have in mind in this contribution. Thus we feel entitled to assume at this
stage of development that the spectral functions remain unchanged and leave the
examination of deviations from this assumption to future experimental and analytical
scrutiny.

We limit ourselves in this inital investigation to materials which are thermorheologically
simple. This restriction is assumed primarily because we do not understand very well the
reason for the breakdown of thermorheological simplicity from a molecular point of
view, though we surmise that the breakdown results from the mechanical interaction of
domains of multiple phases of different constituents in the case of thermorheologically
non-simple materials. In the latter context it would be necessary to apply the considera-
tions outlined below to each constituent in the (molecular) composite but with the con-
straint of mechanically compatible interactions imposed.

Some aspects of this work have been presented in an earlier publication [4] where the
purely mechanical response as well as the effect of certain thermal histories were con-
sidered from a unified point of view besides the pressure-ageing. While we shall deal here
only with the latter topic, we shall next discuss the complete set of constitutive equations
which apply to the former set of conditions and then specialize them to the problem of
pressure-ageing.

3. GENERAL EQUATIONS

In adhering to the assumptions stated towards the end of the previous section we
choose the material description to be governed by the functions of linear viscoelasti-
city, except that the time-temperature shift function of thermorheologically simple solids
is a more general function of the time-dependent and thus instantaneous volume change,
regardless of whether the volume change is induced thermally, mechanically or by solvent
swelling. This shift function ¢ is considered to be a functional of the temperature T, of
the solvenl concentration ¢ and of the mechanically induced dilatation 0, that is
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¢ = ¢{T.c.0} (1)

where curly brackets denote that ¢ is a functional of T,c, and 4. Doolittle [5] expressed this
factor through the free volume by

logé = %(if - % @)

where f is the fractional free volume defined in terms of the total volume V of the solid
and the free volume Vy as

<

2f
f= @

and f, denotes the fractional free volume at some reference temperature. We consider
the free volume to depend on the temperature history and on the strain history, as well as
on the history of swelling. We assume that at any instant in time the variable f Is a linear
functional of the temperature, solvent and of the dilatational stress component.

Linearly viscoelastic volume behavior requires that the dilatation 0 Is related to the
first stress invariant 7 through

o(t) = —;—M(t) . drg )

where M(t) represents the bulk creep compliance and the star notation Indicates
Stielyjes convolution; this statement is true within the context of the present discussion
provided the volume change is so small that the creep function M(t) is not affected. Simi-
larly, we define a volume creep function for thermal expansion a(t) such that under a
sufficiently small thermal excursion history (small volume change) the volume change is
glven by [4].

AVr = V,.0(t) « T (5)

where V, is a Reference volume. Let us leave the question as to whether the time
scale of o(t) needs to be "temperature-reduced” moot for the moment. Finally, we would
postulate a solvent related volume creep function ~(t) which by analogy with (4) and
(5) vyields volume changes under a hypothetical instantaneous change in concentration "c"
to

AV, = V,. A1) » dc (6)

With the definitions (4),(5), and (6) in mind and the assumption of a linear depen-
dence of the space for molecular motion on the volume change we write the contribution
to this motion space f as
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f=fo+ Ac(D+dT + B.M()xdry + c(t)rdc (7)

where the constants A,B, and ¢ need to be generally determined experimentally. They may
possibly all have the same value.

Substitution of (7) into the Doolittle equation (2) renders for the instantaneous shift
factor

b A.o()+dT + B.M()+dT1yy + c(t)xdc

23fs fo + Aa(t)+dT + BM(t)xd7i + c.y(D)=dc ®)

loge =

Note that if o=const and 7,,=0, c=0 this expression reduces to the standard Doolittle equa-
tion and thus to the WLF equation. In the present case this shift factor is a function of the
volume history through the functionals of dilatation, temperature and solvent concentra-
tion. More specifically these latter functionals involve also the history of ¢{t}; for example,
aoxdT depends on the history of ¢{t}. Equation (8) is thus an implicit relation for ¢.

The shift factor modifies the (material-internal) rate with which viscoelastic functions
change. If an environmental change causes a constant change in the volume components,
then ¢ multiplies the relaxation or retardation time in the material functions. We now
assert that in general the argument in the creep functions oft), 7(t) and M(t) must be
"reduced" by the instantaneous shift factor, where the shift function ¢ is itself a function
of the environmental histories.

Lee suggested that the "standard” time-temperature shifting, demonstrated for time-
independent temperatures, be valid instantaneously under transient thermal conditions
[6,7]. We shall assume similarly that the shift relation (8) for ¢ is valid instantaneously
while incorporating the effect of mechanically and solvent induced volume change. We
have thus for a reduced time for the material behavior

_dt
¢{t}

t
f du
o H{T(u),c(u),0(u)}

dt = or t(t)= 9)

Let 7;; and ¢;; denote, respectively, the components of the Cauchy stress and of the (small)
strain. In terms of the deviatoric stresses §;; and deviatoric strains ¢;; the stress-strain
relations are (the summation convention for repeated indices applies)

t :
%=2fuum—s«»?%94g (102)
=3 ) KW - €% de, kM=o (10b)

du (9a)

t
uo-ao={mnmdmmm}
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along with (8) for ¢{t}?

Equations (8), (9), and (10) are coupled and implicit relations for the stress history if,
e.g., the strain history is prescribed at a material point? in dependence on the presumably
known thermal and solvent history. Alternately, if the stress and environmental histories
are prescribed - in particular when the stress is zero - these equations are implicit rela-
tions for the time-dependent volume change c;.

4. EFFECT OF PRESSURE HISTORY ON UNIAXIAL DEFORMATION BEHAVIOR

In this section we are interested in demonstrating the profound effect which the
simple concept of time-dependent volume change has on viscoelastic behavior when such
volume change is allowed to affect the time-shift phenomenon. Struik’s experiments
revealed a time-dependent drift of properties toward an equilibrium behavior after initial
qguenching. Because no chemical changes were involved this change process was termed
"physical ageing.” Similar to the experiments on physical ageing by Struik [1} time depen-
dent volume compaction under pressure changes the viscoelastic response of the material,
tending to "push” the solid "towards glassy behavior" and we may then speak of an ageing
process induced by pressurization. On the other hand, the imposition of a tensile stress
causes an opposing trend. Let us consider uniaxial deformation histories with constant
rate of straining and conslder the response under two types of pressure histories: In one
case let the pressure be applied just prior to or with the start of uniaxial straining; in the
other case let straining start at various times after the pressure has been imposed. In this
latter case the effect of time dependent volume consolidation (ageing) on the time scale of
non-linearly viscoelastic will become apparent. Let us turn first to the case of

a) Simultaneous Pressurization and Straining.

We assume the temperature to remain constant* throughout these strain histories and
consider a sudden step pressure P applied at time t=0 while a constant strain rate history
¢, = const is imposed simultaneously. Thus,

Tk = 3.P.h(t) (11)

and

(|1=eo.t. t20 (12)

Let E(t) be the relaxation modulus for (infinitesimal) uniaxial deformation as shown in Fig-
ure 1 and represented by a Dirichlet series

1_§‘ —t/r
E(t) = E, + S E e (13)

n=]

2. Note that with the present notation ¢xx (t)=0(t)+a(t)xd T+ Y(t)xdc.

3. We choose not to address here the wider problem of thermal and solvent diffusion and their interaction with
the state of stress or its field.

4. Actually pressurization produces in general also a temperature rise, which we neglect in these illustrations.
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where the E, and 7, are given in Table I. These coefficients were determined in a colloca-
tion procedure based on the data in Figure 1.

Table 1.
E, = 26.613 [bar]
n E, [bar] 7, [min]
1 677827 1 10-8
2 8.527 3.162 10-8
3 545344 1 10-7
4 876463 3.162 107
5 564947 1 10—
6 584.252 3.162 10-8
7 340672 1 10-3
8 286.495 3.162 10-3
9 262926 1 104
10 120.850 3.162 104
11 22663 1 10-3
12 28.793 3.162 103
13 5.446 1 102
14 3.076 3.162 102
15 1.561 1 101
16 0.253 3.162 10!
17 0 1
18 0.072 3.1622 /
-2.2
o T 11 A
: i ] 124
E' - 1 14-26
- - 1 =281 _
n - 1 7
» — -1 1-3 8
- - — —
— - 4 4-3.2 =~
- r 101 1 :_34‘”
5 -20 0 207[()] i
15 1738
: = -4
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log t [min]
Figure 1. Relaxation modulus for uniaxial state of stress. Bulk creep compliance and
thermal shift factor used for pressure related computations on Solithane 113

(50/50).
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Further, let M be the corresponding bulk creep compliance similarly represented by

9
M(t) = M, + 3 My(1 — e™/) (14)

n=1

which is also indicated in Figure 1, the coefficients M, and x, being listed in Table II. In
view of the fact that we are concerned in this section with qualitative results we estimated
the coefficients M; from data offered by Pae [3) through collocation.

Table II.

M, = 9.1811 105 [bar!]
n M, [bar] Xn [min]
1 5.619 10~ 3.162 108
2 17.82610°% 1 107
3 0294 104 3.162 107
4 0.192 104 1 10-6
5 041510 3.162 10-¢
6 0.343 10% 1 10-3
7 0.401 10* 3.162 10-°
8 8.468 10-% 1 10-4
9 10.35110¢ 3162 10

If 71, and ¢, are the increments of stress and strain from the pressure and the volume
strain the stress strain relations are then

0 = J B — (01 40
‘ i EL(O - €10) dg (152)
:
00 = [ MIE) - €61 2 1) + L ryl ae (15)
where, again
(0= ] gt and €9 = [ b (16)
Ing(T,0,0) = -2 __ B.A) (17)

fo(T) fa(T)+B.0(t)
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In these computations we used B=1 because we do not know K(t) or M(t) closely. The pro-
perties in Figure 1 are defined for 0°C. To make use of these at different temperatures we
shift the functions according to the shift factor inset in that figure. However, the parame-
ters b(T) and f,(T) in (17) must be adjusted to the appropriate temperature [8]. It remains
to evaluate equations 15-17 numerically.

In Figure 2 we show for reference purposes the non-linear response at -20°C, 2°C
below the glass transition, under zero imposed pressure as the unlaxial strain rate is
varied. One notices the appearance of a yleld phenomenon, with the yield stress and yleld
strain increasing with the strain rate.
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Figure 2. Uniaxial Stress response to constant strain rates for atmospheric pressure and
for properties shown in Figure 1.

In terms of the present physical model the appearance of the yield phenomenon has
the following explanation. The imposition of a pressure causes a decrease in the (free)
volume and thus a vitrification of the solid. However, the imposition of a tensile
stress counleracls this vilrificalion process and produces, wilh increasing slrain (stress)
an increase in the rate of molecular relaxation through a change in the time-shift function.
Whether one achieves a yield phenomenon or not depends on the competition between
the pressure-induced solidification and the tension-induced volume increase. Once the
two rates roughly balance each other the stress reaches a plateau such as seems to be
approximately the case for curve "B" in Figure 2 . For higher strain rates the tension-
induced volume increase occurs faster than the solidification due to the imposition
of the pressure thus leading to a relaxation process which overpowers the stress increase
due to straining. We shall see that this phenomenon occurs again later in an even more
pronounced fashion depending on the past vitrification history of the material.

Figure 3a illustrates the effect of increasing the pressure while keeping the tempera-
ture constant just below the glass transition (-20°C) and for a fixed strain rate of
¢=20min~!. Note again the occurance of the yield phenomenon, with the vyield stress
increasing with pressure. This observation merely substantiates the fact that a
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higher environmental pressure requires a higher tension in order to overcome the
pressure-induced vitrification process. However, the yield phenomenon appears to
depend also on the fact that the volume change induced by the uniaxial straining lags
behind the strain due to the viscoelastic volume response. This statement becomes evi-
dent when one looks at the identical strain and pressure histories but at a temperature
well above the glass transition temperature. Thus, Figure 3b shcws results for the same
pressure and strain histories as Figure 3a, but about 12 degrees above the glass tempera-
ture. Here one notes the absence of the yield behavior because first, the temperature is so
high that pressure-induced volume decrease occurs almost instantaneously, and second,
the volume change produced by the uniaxial straining is very much in phase with the
strain so that any relaxation process occurs simultaneously with the straining rather than
being delayed viscoelastically.
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Simultaneous pressure application and imposition of strain rate of ¢=20min~!

Figure 3.
aT=—-20°C; b:T= -5.5°C.

b) Pressure Ageing

Consider next the effect of imposing pressure on the material at time t=0 and sub-
jecling il Lo slraining alter different times {, have passed. The equations governing this
history are similar to (14) and are given by

(D) = &Gh(t - 1) ELE() — €(©)lde (18a)
t
. ) ooood
0(0) = P.MIE@] + kit — ) [ MIEQ) - 6(6)]—3—‘;&@ (18b)
t)

where t(t) and £(t) are still given by (16) and (17).

Solutions to these equations for several situations are given in Figures 4a to 4d.
Several features stand out and deserve attention: The effect of the time dependent consoli-
dation process is clearly evident in that longer times between pressurization and straining
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gives rise to markedly stiffer material response and an increase in yield stress with this
ageing time as noted in reference 3. Again, the competitive effect of pressure-induced con-
solidation with the tension-induced volume increase is very evident as in the cases con-
sidered in Figures 3a and b, except that the effect is more pronounced because with
increased ageing time the consolidation can progress more completely and thus give rise
to more pronounced relaxation upon reaching a sufficiently high tension-induced dilata-
tion. Finally, Figure 4c illustrates again the behavior at about 12 degrees above the glass
transition; one notes again that at this elevated temperature the adjustment of the (free)
volume to equilibrium conditions occurs very rapidly so that the tension-induced volume
change is very much in phase with the strain. As a consequence the time-dependence of
the bulk deformation barely enters the considerations and the stress-strain curves for the
material "aged" to varying degrees are virtually indistinguishable. Clearly, Figures 4a-c
illustrate the importance of the time-dependent volume behavior of polymers in their
non-linear mechanical characteristics.
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Figure 4. Uniaxial stress-strain behavior superposed on pressure of Ap = 20 bar.

5. CONCLUDING REMARKS

We have illustrated, on hand of sample calculations, the importance of time-dependent
volume consolidation on the mechanical, non-linearly viscoelastic response of polymers.



The temperature and deformation rates play an important part in this behavior, in large
measure because these variables determine the rate of change of the (free) volume.

We point out in closing this presentation that the non-linear effects considerered here
derive only from the single physical phenomenon of molecular motion and do not incor-
porate such macroscopic physical phenomena as crazing or fracturing, both of which
effects give rise to (additional) non-linear "consitutive" behavior. The presently discussed
behavior is, however, a precursor to the latter physical phenomena and can hardly be
neglected in their time-dependent description. Thus one would expect that the "molecular”
yielding exemplified here is the reason why zones of mechanically unstable material
behavior develop in materials around zones of stress concentration, which zocnes develop
possibly into craze zones.
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A STMPLIFIED ORTHOTROPIC FORMULATION OF THE VISCOPLASTICITY
THEORY BASED ON OVERSTRESS

M. Sutcu1 and E. Krempl
Department of Mechanical Engineering,
Aeronautical Engineering and Mechanics

Rensselaer Polytechnic Institute
Troy, NY 12180-3590

An orthotropic, small strain viscoplasticity theory based on
overstress is presented, In each preferred direction the stress is
composed of time (rate)-independent (or plastic) and viscous (or rate-
dependent) contributions. Tension-compression asymmetry can depend on
direction and is included in the model. Upon a proper choice of a
material constant one preferred direction can exhibit linear elastic
response while the other two deform in a viscoplastic manner,

INTRODUCTION

Recently directionally solidified alloys, nickel base single
crystal superalloys and other anisotropic metallic composites have
attracted interest for use in gas turbines and other high temperature
applications, The usual high temperature phenomena such as creep,
relaxation, rate sensitivity, recovery and aging found in nearly iso-
tropic materials are also present in these materials. However, all these
properties are now dependent on direction.

For the prediction of life of components made of anisotropic
materials and operating at elevated temperature the deformation behavior
must be known in addition to anisotropic damage accumulation laws. It
is the purpose of this paper to introduce an orthotropic version of the
viscoplasticity theory based on overstress (VBO), (the transversely
isotropic case can be recovered as a specialization). The uniaxial and
the isotropic version of VBO were introduced previously [1,2]. The theory
is of the unified type (plasticity and creep are not represented by
separate constitutive equations) and does not employ the concepts of a
yield surface and associated loading and unloading conditions. In the
present form of the theory aging and recovery are not accounted for but
can be added if need arises,

1 Now with General Electric Corporate R&D Center, Schenectady, NY.
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The orthotropic formulation was derived with the help of tensor
function representation theorems [3] and the uniaxial version of the
VBO, Simplicity was a goal as long as it was consistent with the
necessity of modeling key material phencmena, The temsor function
approach is not restricted to the orthotropic case and can be applied
to other material symmetries as well,

UNIAXIAL PROPERTIES OF VBO INCLUDING ASYMPTOTIC SOLUTIONS

In the formulation of VBO special consideration was given to the
modeling of elastic regions in addition to the usual time-dependent
properties [1]. A useful property of the system of nonlinear differ-
ential equations is the existence of asymptotic solutions which are
algebraic expressions. They apply mathematically at infinite time in
a constant strain rate or creep, or relaxation test. However, it is
our experience that these asymptotic solutions can be used with confi-
dence when plastic flow is fully developed in a tensile test [1,4].

A schematic of the properties of the model in a tensile test is
given in Fig.l. The evolution of the stress o, the equilibrium stress g
(which is reached when all rates approach zero) and of the quantity
f=Ece are shown, It is introduced for modeling a nonzero slope Et in

the plastic region even when the asymptotic solutions are attained. The
asymptotic values are indicated by { } in Fig.1. It is seen that the
stress consists of {¢- g}, the time-independent or viscous contribution,
of {g- £} which represents the time-independent or plastic part and of
the portion which grows linearly with ¢; it is termed the hardening
contribution. It is zero when the tangent modulus E_ is set to zero,
see [1,2] for further details. In a neighborhood of the origin, ¢ and g
almost coincide and nearly elastic behavior is represented,.

In the formulation of the anisotropic version of VBO the elastic
properties can depend on direction, In addition, it was felt necessary
to have separate directional properties for the viscous, the plastic and
the hardening contributions to the stress. (It is important to note
that the theory does not separately formulate plastic and time-dependent
constitutive equations, However, the asymptotic solutions of the theory
permit such a distinction,) The reason for this distinction lies in the
realization that different material constituents may be used in different
directions (example; directionally solidified alloys) or that the micro-
structure may develop an orientation dependence. Moreover, fibers with
predominantly elastic behavior may run in one direction and the visco-
plastic matrix may control the behavior in other directions,

AN ORTHOTROPIC VISCOPLASTICITY THEORY BASED ON OVERSTRESS

In [6] a fully invariant theory is developed with arbitrary
orientation of the principal material axes relative to the coordinate
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system used in the representation of the tensors, Presently we assume
that the coordinate system in which the tensor components are given
coincides with the material axes. Vector notation is used with

C,,=C

117517 9227925 09337035 9,370, 01305 and g ,%0g 1)

and with a similar convention for the small strain ¢ except that
engineering shear strains are used for the vector components €,
through €g

The evolution of the stress is governed by

dg/dt = g’{di/dt - d'gin/dt} 2)

where C is the matrix of elastic constants. The inverse of E; 9:1 is

given by, see [5]

— —
1/E; - VZI/EZ- v31/E3 0 0 0
l/Ez- v32/E3 0 0 0
971 - l/E3 0 0 0 3)
Symmetric 1/G23 0 0
1/G13 0
1/G12

i
The inelastic strain rate dg B/at is represented by

dg'®/de = K[ Rx )

where the positive function K[I'] is a repository of viscous effects
(R[] = 1/ €Ek[T')) where k[I'] is the viscosity function used in [1]).
The dimensionless components of the matrix R are called the inelastic
lateral ratios. The invariant I' is defined as

r = ol + olu (5)

with ﬁ? = [a1 a,a,00 0], where the dimensionless components a, are
zero when the viscous effects are the same in tension and compression.

91



VY is the matrix of the viscous lateral ratios, The overstress is
x =g-g. The equilibrium stress evolves according to
2 in
dg/dt = y[rIB[rl(de/de - 8°dg™ /dt) (6)

This growth law is very similar to the one used in [1,2]. The invariant
8 is given by

1/2

8 = ((§‘T'S~§‘§') + ")"T'Svg')/A @)

with E? = [b1 b2 b3 0 0 0]. The dimensionless components bi are zero

when the plastic effects in tension and compression are equal, The
analysis of the asymptotic behavior of the uniaxial equivalent of (6)

in [1] shows that {g- f} in Fig.l equals the constant A which has the
dimension of stress., The dimensionless components of the matrix S are
the plastic lateral ratios. The dimensionless components of B are called

shape ratios and are initially equal to the components of Elgf called

2
the elastic ratios, The positive, decreasing shape function w[F] has the
dimension of stress with §[0] slightly less than the elastic modulus El’

see [1]. For simplicity the tangent modulus E_ was set equal to zero so
that £ in Fig.l is zero and all the stress-strain curves become ulti-
mately horizontal.

Due to orthotropy, the matrices R, V, § and B all have the same

representation as the matrix C 1 in (3) and have therefore nine inde-
pendent components, The components of each matrix can be selected
independently to model the observed directional dependence of the various
material properties.

The initial elastic properties are controlled by E as in the case

of elasticity, The evolution of the inelastic strain rates are influenced
by R and V. They also contribute to the asymptotic overstress {ﬁ], see

Fig.l, given by
{x} = R°" a¢/ae/rI{r}] (8)

The asymptotic time-independent or plastic contribution to the
stress is controlled by the invariant § through

32 =1 @)

and it is seen from (7) that the directional properties are controlled
by § alone,

92



Detailed analysis in [6] shows that the matrix B together with

the shape function §[I'] controls the "knee" of the stress-strain curves
in different directionms,

A simplified version which has been shown to be useful [6] is
to set R = §f1 = Elgfl and to choose §land X independently. This choice
permits the independent adjustment of the viscous and plastic asymptotic

contributions to the stress. Within this choice it is possible to model

i) purely elastic behavior under a hydrostatic state of
stress,

ii) linear elastic behavior in any of the preferred
directions while the other directions behave in a
viscoplastic manner,

This last property is very useful for modeling fiber reinforced materials.

It should also be stressed that the theory permits the modeling of tension/
compression asymmetry which depends on direction through the dimensionless

vectors a and b,

The capabilities of the theory are demonstrated in Figs,2 through 4,
They depict the response of a transversely isotropic material to a con-
stant strain rate tensile test in the 1- and 3-directions, respectively.

In Fig,.2 R= S =V = B-l = EIC“1 and the evolution of the stress and of
~ "~ ~ ~, ~ 1

the equilibrium stress are governed by the values of gf . It is seen
that the elastic modulus, the stress and the overstress in the 3-direction
are always larger than in the l-direction, When S33 and V33 are set equal

to zero (all other quantities are the same as in Fig.2) the response in
the 3-direction is nearly linear elastic whereas that in the l-direction
is unaffected, see Fig.3. When S33 is set equal to 0.5 (instead of

50/35 used in Fig.2; all other quantities are unchanged from Fig,2) the
curves of Fig.4 result, This choice will increase {g@a], the plastic or
time independent part of the stress, but will leave the overstress, the
viscous contribution to the stress, unchanged. Due to the nature of the
constants the equilibrium solution has not been attained within the
1limits of the graph in Fig.4.

The above represents only part of the capabilities of the theory
developed in [6]. It includes an incompressible inelastic, deviatoric
formulation. Further developments are given in [7). The theory needs
to be applied to real anisotropic materials so that the material func-
tions and constants can be identified and the usefulness of the theory
be demonstrated,
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Constitutive Modeling and Thermoviscoplasticity

Development and solution of coupled thermomechanical equations at elevated
temperature and/or high strain rates are discussed. Three main considerations
are presented: development of the coupled thermomechanical equations by means
of the rational theory of thermodynamics, development of a thermoviscoplastic
constitutive equation which is congruous with the developed coupled equations,
and the applicability of the developed equations to the treatment by the
finite element method.
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Introduction

It is well established that finite deformations of a solid body particularly
at elevated temperature and/or high strain rates represent coupled
thermomechanical processes, which require the simultaneous solution of the
coupled balance of momenta and energy equations. A proper devélopment and
solution of such thermomechanical problems requires: 1) adoption of the
rational theory of thermodynamics, 2) a comprehensive viscoplastic
constitutive equation which accounts for the strain rate, temperature and
hardening effects, and 3) compatibility with the available numerical tools,
particularly the finite element method. These requirements taken together have
not been used extensively by researchers in dealing with thé coupled
thermomechanical problems. However, because of the need for stringent accuracy
when solving practical thermomechanical problems such as in rockets and in
nuclear reactors, the importance of these requirements is being recognized.
Inoue and Nagaki [1] and Allen [2] developed coupled thermomechanical
equations with limited applications to one dimensional problems. Ghoneim [3]
presented a coupled equations, without hardening effects, and applied them to
a two dimensional axisymmetric problem of compression of a constrained-ends
cylinder. Lehmann [4] presented a comprehensive analysis of the development of
the coupled equations with application to the necking problem in a specimen
subjected to the tensile test. However, a more realistic constitutive law
which includes strain rate and temperature effects is needed.

In this paper development and solution of the coupled thermomechanical
problems is considered, based on the three requirements listed earlier: The
coupled thermomechanical equations are developed on the basis of the rational
theory of thermodynamics; a viscoplastic constitute equation which accounts
for the temperature, strain rate, and hardening effect is proposed; and the
computability of the developed coupled thermomechanical equation with the
finite element method is discussed.
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Development of the Coupled Thermomechanical Equations

We assume that the state of a material point is oompletely determined by the

knowledge of the elastic strain tensor ge, the inelastic strain tensor gI,
the absolute temperature T, the temperature gradient VT, and a set of
internal state variables gj. i,=1,..., p. Consequently, the following

constitutive relations may be postulated:

s=s(e gt o, o) (1.1)
vev (L EL T g ) (1.2)
s=s (5, B, 1,9, 4 ) (1.3)
a=a (£ EL T g ) (1.4)
El-=g (et g, oom, o) (1.5)
and

g' =g (F, En el (1.6)

where S 1is the second Pijola-Kirchhoff stress tensor, ¥ stands for the

Helmholtz free energy, s means the specific entropy, and q is the heat flux

per unit area.

Upon invoking the axiom of admissibility (i.e., the compatibility of the
assumed constitutive relations with the fundamental equations of mechanics)
and when adopting the separabilty of the total Green-Lagrange strain energy

I, T

tm
]
m

Iy
+

fim
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where Y is the coefficient of the thermal expansion tensor, it follows:
) v=y (L EL T g

S=a—we—:l'§ip‘=s(£e,£’.r,g1)

oE oT
s=p2 -5, LT, )
of
2) p (e guin s v L2
ofF og
Vo
and 3) (S-oa—wg il*’p‘ai 2a-9-520 (3)
o %
At this stage, we may postulate
Pb=obo +3E D i Evpoc, T-mT+g:g ...(4)

where D4 is the fourth order elasticity tensor, p is the density at the
reference configuration, and cvstands for the specific heat at constant

deformation. The tensor 8 1is the material property tensor. Substituting (4)

and the Fourier's law, q = - kVT into equations (2) and (3), we obtain
2 . - ; . p€ Lel .
-kVT+pch--p(l.D".E)T+i.£-pé:g ...(5)
and
. 2
'é:£1+p§:g+k(vn >0
- Z

Equation (5) is the coupled heat equation which together with the balance of

linear momentum equation constitutes the set of coupled thermomechanical

equations. It might be worth pointing out that the right-hand side of the
equation (5) represents the mechanical energy generation; the first term
stands for the reversible part, the second for the dissipated irreversible

part, and the third for the stored irreversible part due to microstructural
effects.
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The Viscoplactic Constitutive Equation

Solution of the coupled thermomechanical equations requires closed-form
expressions for (1.5) and (1.6). These may be taken from any of the state
variable theories [5-8]. Inhere, a constitutive equation which may be regarded
as a modification of th Bodner-Partom's power law is proposed. The proposed
equations are thought to be simple, lucid, and consequently very practical. As
in the case of the internal state variables theory, the proposed constitutive
equations utilize two state variables: a kinematic hardening state variable
which accounts for the "rest" stress, and an isotropic hardening state
variable which accounts for the "drag" stress. Only the isotropic hardening
state variable will be considered in this paper.

After adopting the flow rule, we can show that

= " T TE ... (6)
where T=  is the effective stress ( 10 =V 7 54; 833 )s 3 is the

deviatoric stress tensor, n is a strain rate sensitivity parameter, and Y is
the isotropic hardening state variable which is equivalent to the dynamic
yield stress [8]. In general, Y is a functional of the history of deformation
or any related quantity such as the viscoplastic work NP. If the convolution
form of Stieltjes integral is adopted for such functional

t
Y= e-T/TONp(t-T)dT
0

where t is the time and To stands for the relaxation time constant, and when
the 3-parameter element model is considered, we get

?+aY=H1 ﬂp+H2VNp ---(7)

where a, H1 , and H2 are material constants.

In order to incorporaté the temperature effects into the evolution equations
(6) and (7), Y is expressed as a function of temperature. Since in the
proposed constitutive equations Y can be viewed as the equivalent dynamic
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yield stress, the function may be constructed from experimental data of the
yield stress versus temperature. A possible form of this function is

Te - T
Y=Y (—)
O(TC"TO ...(8)

where TC is a constant, To is a reference temperature, and Yo is the value of
the yield stress at TO. In addition, from the observation of the variation of
the plastic flow with temperature, we have £I proportional to exp (-Q/RT),
E ~exp (- Q/RT) (9)

where Q@ is the activation energy (assumed constant), and R is the universal
gas constant. From equations (6), (8) and (9) it follows that n must be a
function of T,

Q (T-To) / 1n (Tc-To)
R
ToT Te-T ...(10)

The proposed viscoplastic constitutive equations (equations (6) and (7)
subjected to (8) and (10)) are examined by conducting a series of
one-dimensional uniaxial numerical calculations. Samples of the results are
given in Figures 1-4. Figures 1 and 2 display the tensile stress-strain
results at different strain rates and temperature. Strain rate history effects
are demonstrated by a jump test in Figure 3. Cyclic test results, Figure 4,
depict the «cyclic hardening effects. Qualitatively speaking, results
demonstrate the capability of the proposed viscoplastic constitutive equations
in generating some of the important characteristics of a class of viscoplastic
materials. A quantitative investigation of the constitutive equations is to be
conducted experimentally for some viscoplastic materials in a future work.
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Finite Element Implementation

Compatibility of the developed coupled thermomechanical equations is
demonstrated for the case of quasistatic infinitesimal deformation with no
body force and no heat generation, i.e.,

vog =0 ...(11)

Jo is a scalara constant, P is the density, & stands for the Kronecker

symbol, o and € are the stress and strain tensors, respectively,
expressed in vector form, .21 and Eyp the corresponding deviatoric stress
and viscoplastic strain vectors, respectively, €, is the dilatation, and [D]

is the elastic matrix.

When adopting the Galerkin finite element method, (11) and (12) become,
respectively,

[Kk1JO0+[C11t=R+F ...(13)

[c2] T+ [kl

n

[F )
+
o

...(14)

where U, T, R, and Q are the nodal displacement, the nodal temperature, the

nodal force, and the thermal convection load vectors, respectively, F, is a
vector which accounts for the viscoplastic effects of the balance of *omentum
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equation, and F, is a vector which accounts for the mechanical heat
generation. Also, [K1], [K2], [C1], and [C2] are, respectively, the stiffness,
conductivity, coupling, and consistency matrices. The differential equations
(13) and (14) can be solved by using the general "6" method in conjunction
with the fixed point iteration method for the solution of the ensuing
nonlinear algebraic equations. Results of tensile and compression'loading of a
constrained-ends cylinder for a constant Y can be found in [8].

The extension of this work to incorporate hardening and temperature effects
and solving other practical problems is being undertaken.
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APPLICATIONS OF ELASTIC-VISCOPLASTIC CONSTITUTIVE MODELS IN
DYNAMIC ANALYSES OF CRACK RUN-ARREST EVENTS*
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Oak Ridge, Tennessee 37831

Unified constitutive theories attempt to treat different manifesta-
tions of time-~dependent inelastic behavior, such as creep, stress re-
laxation, and plastic flow, by a single kinematic equation and a
discrete set of state variables. The motivation for developing such
theories has, over the last fifteen years, come mostly from interest in
high-temperature applications. High temperature refers to the range
where observable creep deformations occur over long periods of time when
the stress levels are near the engineering yieid stress. There are,
however, rapid loading situations at lower temperatures where rate
effects can become equally important. One such situation is the
representation of rapid crack propagation events in ductile structural
alloys. Ductile here means that the material is at a temperature above

that where cleavage (brittle) fracture characteristics cease to be

*Research sponsored by the Office of Nuclear Regulatory Research.
U.S. Nuclear Regulatory Commission under Interagency Agreements 40-551-75
and 40-552-75 with the U.S. Department of Energy under Contract DE-ACO5-
840R21400 with Martin Marietta Energy Systems, Inc.

By acceptance of this article, the publisher or recipient acknowl-
edges the U.S. Government's right to retain a nonexclusive, royalty-free
license in and to any copyright covering the article.
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present. The temperature for transition from brittle to ductile frac-
ture may be well below the classical creep regime, for example, about 50
to 100°C for some nuclear grade structural steels. This paper examines
the role that viscoplasticity may play in the prediction of crack
run/arrest behavior in such ductile steels.

The growing interest in the viscoplastic aspect of fracture be-
havior is reflected by several recent studies'>Z in the literature
which emphasize the importance of including combined plastic and strain-
rate effects in constitutive relations. Accordingly, in concert with
subcontracting groups, the Heavy—-Section Steel Technology (HSST) Program
at the Oak Ridge National Laboratory (ORNL) is supporting research
efforts to develop viscoplastic-dynamic finite element analysis tech-
niques for high strain-rate fracture analyses and to validate their
utility through the analysis of carefully performed crack-arrest experi-
ments. In particular, these analysis capabilities are expected to give
an improved basis for assessing the dynamic fracture behavior of large
(1 X1 X 0.1 m) plate crack-arrest specimens currently being tested by
the National Bureau of Standards as part of the HSST program.

In the studies being conducted at ORNL, various viscoplastic
constitutive models and several nonlinear fracture criteria are being
installed in the ADINA general purpose finite element computer program,
and the combined predictive capabilities are being evaluated through
applications to the HSST wide-plate experiments. The first two consti-
tutive wodels selected for installation in ADINA were a variation of the
Perzyna3 elastic-viscoplastic model with linear strain hardening and the

y

Bodner—-Partom® viscoplastic model with strain hardening. Other models
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being examined include those due to Robinson-Pughs, and Hart.® The
fracture criteria being examined for use with nonlinear analyses include
several path-independent integrals that were formulated by different re—
searchers (e.g., Atluri,” Kishimoto®) to remove limitations on the
original J-integral of Rice. Some of these integrals represent slight
modifications of the J-integral, while others have a different theoreti-
cal basis.

This paper describes applications of these nonlinear techniques to
the first series of six HSST wide-plate crack-arrest tests that have
been performed. These experiments include crack initiations at low tem-
peratures and relatively long (20 cm) cleavage propagation phases which
are terminated by arrest Iin high-temperature regions. Crack arrests are
then followed by ductile tearing events. Consequently, the crack-front
regions in these tests are exposed to wide ranges of strain rates and
temperatures.

The viscoplastic formulations installed in ADINA at ORNL can be ex-

pressed in vector form at time t as

t ;:vp - (:o Dto, (1)

where e'P is the viscoplastic strain rate, o is the stress tensor, and D
is the deviatoric stress operator matrix. The implementation of the
Bodner-Partom" model in ADINA is based on the formulation described by

Kanninen, et al.? for which ¢ is defined by

¢ - o o[~ (362
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where the hardening parameter Z has the form
Z=121 + (Zg—21) exp (-m wp) 3)

and where Zg, 23, n, m, Dy = prescribed material comstants,

"p

J2 = second invariant of devlatoric stress.

accumulated plastic work, and

In Ref. 9, temperature dependence of the material properties is taken
into account primarily through the relations

u
n=-1—7,I;§-+ 1.35 and Zo=-g—'-éﬁ-,i->-‘—-1—0—

+ 1084 (MPa) , (4)
where temperature T is in deg K. Values for the remaining material con-
stants are given by m = .061 (1/MPa), D, = 10%, and Z) = 1550 MPa.

The Bodner-Partom model described above has been applied to the
analysis of the fifth HSST wide-plate crack—-arrest test, WP-1.5.
Figure 1 shows the single—edge-notched plate specimen (1 X 1 X 0.1 m)
that was cooled on the notched edge and heated on the other edge to give
a linear temperature gradient (Tmin = -83.3°, Thax = 183.3°C) along the
plane of crack propagation. Upon initiating propagation of the crack in
cleavage, arrest was intended to occur in the higher-temperature ductile
region of the specimen. The specimen had an initial crack depth-to-
plate width ratio (a/w) of 0.2. Each surface was side-grooved to a
depth equal to 12.5% of the plate thickness. The specimen was welded to
pull-plates which have a pin-to-pin length of 9.6 m to minimize stress
wave effects. Drop weight and Charpy test data indicate that RTNDT =

-23°C for this material. Information on material properties of the

wide—-plate material are described in Ref. 10.
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The specimen was instrumented with thermocouples, strain gages, and
crack-opening-displacement gages. A series of eleven thermocouples and
sixteen strain gages were located about 65 mm above the crack plane
across the plate to record temperature and strain as functions of time
and crack position.

The two-dimensional (2-D) finite element model used in the analysis
consisted of 1833 nodes and 567 eight-noded isoparametric elements. The
measured fracture load of Fy = 11.03 MN was applied at the top of the
load-pin hole to determine the load point displacement. For the dynamic
analysis, the load point was fixed at the displacement value of the ini-
tiation load and the time step was set at 4t = 1 us in the implicit
Newmark scheme for the time iIntegration. The estimate of crack position
ve. time in Fig. 2 was constructed from strain-gage data and was used as
input for a generation mode dynamic analysis. Figure 2 shows the mea-
sured first crack arrest at afm1 = 0,52 m which occurred at time
t = 0.723 ms after crack initiation. Figure 3 shows contour plots of
the effective viscoplastic strain at times t = 0,7 ms and t = 2.9 us,
respectively. The time histories of the Atluri and the Kishimoto path-
independent integrals are depicted in Fig. 4. The results are expressed
in terms of a pseudo-KI value for purposes of comparison with elasto-
dynamic values. The values at crack arrest were determined to be

K, = 208 MPa’m (Atluri) and Ky = 174 MPa’m (Kishimoto).

I
Computed results from the viscoplastic analysis are compared with
measured data for crack-line strain-time response and with elastodynamic

analyses of the same crack run—-arrest event. Work is currently under

way to determine material constants for the Perzyna model that can be
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applied to wide-plate analysis. Results of this effort will permit
comparisons between the Perzyna and the Bodner—-Partom models for the
wide~plate material in the temperature and strain-rate regions of

interest to the HSST program.
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A THEORY OF VISCOPLASTICITY ACCOUNTING FOR INTERNAL DAMAGE

A.D. Freed
NASA Lewis Research Center
Cleveland, Ohio 44135

D.N. Robinson*
The University of Akron
Akron, Ohio 44325

A constitutive theory for use in structural and durability analyses of
high-temperature isotropic alloys is presented. Constitutive equations based
upon a potential function are determined from conditions of stability and phys-
ical considerations. The theory is self-consistent; terms are not added in an
ad hoc manner. It extends a proven viscoplastic model by introducing the
Kachanov-Rabotnov concept of net stress. Material degradation and inelastic
deformation are unified; they evolve simultaneously and interactively. Both
isotropic hardening and material degradation evolve with dissipated work which
is the sum of inelastic work and internal work. Internal work is a continuum
measure of the stored free energy resulting from inelastic deformation.

INTRODUCTION

The nucleation, growth and coalescence of voids and microcracks are physi-
cal phenomena that degrade a material's continuity. This degradation results
in a loss of strength, and is the eventual cause of failure. Continuous damage
mechanics applies whenever the distribution of defects does not include one or
more dominating macroscopic cracks; otherwise, fracture mechanics applies. The
subject of this paper falls under the topic of continuous damage mechanics;
applications to fracture mechanics are not discussed.

A constitutive theory applicable to structural and durability analyses of
high-temperature isotropic alloys is developed. A set of constitutive equa-
tions based on a single potential function is determined from stability con-
ditions and physical considerations. A specific potential function from a
proven viscoplastic theory is extended to account for internal damage by intro-
ducing the Kachanov - Rabotnov (refs. 1 and 2) concept of a net stress. Inter-
nal damage and inelastic deformation are unified in this approach; they evolve
simultaneously and interactively. The theory is self-consistent in that it is
derived from a potential function; terms are not added in an ad hoc manner.
Other viscoplastic theories that incorporate continuous damage mechanics have
been proposed. The evolutionary equations for material degradation in the
theories of Chaboche (ref. 3), Bodner (ref. 4), and Walker and Wilson (ref. 5)
are phenomonologically determined, whereas, the Perzyna theory (ref. 6) is
micromechanistically based. In this paper the evolutionary equation for mate-
rial degradation is derived from a potential function.

*NASA Lewis Resident Research Associate.
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Continuous damage mechanics deals with, an infinitesimal volume element
of material (called a particle), whose dimensions are large enough to contain
many material defects, yet small enough to be treated as a mathematical point
in a continuum sense. Consider a face on such an element whose unit normal is
given by n1.] Let A denote its surface area in a flawless (or undamaged)
state, and Tet A' denote its net surface area in the presence of material
defects (or in a damaged state); thus A' < A. The internal damage associated
with this particle, and in the direction of this unit normal, is defined by

A-A
w="7 ()

which is bounded by the interval 0 ¢ w < 1 where w =0 1in an undamaged
state. Whenever the orientations of material defects have preferred direc-
tions, damage becomes a function of these directions resuiting in an entity of
tensorial nature (refs. 7 to 9); otherwise, damage is isotropic and can be
represented by a scalar. In this paper, damage is taken to be isotropic as a
simplifying assumption. Kachanov (ref. 1) calls the quantity ¢ =1 - w the
continuity of the material.

Consider once again a face on an infinitesimal material volume element.
In an undamaged state, traction is the ratio of the force transmitted through
the surface Fj to the surface area A. It is related to the unit normal nj
by a homogeneous linear operator oij called the applied (or Cauchy) stress,

that is?2

Fi
In a damaged state, traction becomes the ratio of the force transmitted through
the surface Fj to the net surface area A'. It is related to the unit normal
nj by a homogeneous linear operator o'1j called the net (or Kachanov-
Rabotnov) stress; thus

Fi
AT = °ijnj &)
Combining equations (1) to (3) results in
g

% =0 - o
which relates the net stress to the applied stress.

) Like the classical theories of creep and plasticity, strain e, is
given by the sum 1]

TA11 scalar, vector and tensor fields are defined at particles whose spa-
tial coordinates are xj at the instant t 1in a Cartesian reference frame.

2Repeated indices are summed over in the usual manner.
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- p
e1j = sij + eij (%)

where e?j is the elastic strain and e?j is the inelastic (or plastic)
strain. From a thermodynamic viewpoint, the elastic change in strain is the
reversible portion of a change in strain, while the inelastic change in strain
is the irreversible portion of that change in strain. Small displacements and
rotations are assumed.

The elastic response of polycrystalline metals is given by the relation-
ship
€ij ~ EQ - )

where v is the Poisson ration, « 1is the mean coefficient of thermal expan-
sion, AT is the temperature change and 5ij is Kronecker's delta. Since E
is Young's modulus in an undamaged state, and E' = E(1 - w) can be considered
as Young's modulus in a damaged state, we obtain the following expression:

(E - E")
w="—F (N

This is a useful measure of internal damage, because it can be readily deter-
mined by experiment (ref. 10).

CONSTITUTIVE THEORY

Much of the essential structure in the classical theory of plasticity
derives, not so much from thermodynamic concepts, but from concepts of mate-
rial stability as described by Drucker (ref. 11). A single postulate of
stability is sufficient to unify the description of inelastic behavior of time-
independent materiais under isothermal conditions. A dual postulate of stabil-
ity has been applied by Ponter (ref. 12) to time-dependent materials whose
hereditary behavior can be represented in terms of internal state variables &g
(o = 1,2,...,n) and their conjugate thermodynamic forces f,. In that work,
small isothermal changes in stress at constant internal state are assumed to
obey the inequality

P
doy; def; 20 (8)

where fa and T are constant; whereas small isothermal changes in internal
state at constant stress are assumed to satisfy the inequality

dfF dE_ > 0 (9)
a a - .

where 95 5 and T are constant. In contrast, a thermodynamic counterpart

to the second-order inequality in equation (9) is the restriction of positive
internal dissipation
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FE 50 0

which i1s derived from the second law.

Since changes in inelastic strain rate and internal variable rates are
path independent in the complete state space, the inequalities in equations (8)
and (9) can be integrated along a straight-line path between two arbitrary

states (olj,fl,T) and (afj.fz,T) resulting in the following inequality:
[+ 3 [+ 3

2 1 ‘p2 ‘pl 2 1Y .2 -1
(oij -Cij)(eji - eji)+<fa-fq>(ga-gq)')'o (]])

Along a constant stress path (i.e. under conditions of creep) only the last
term in this inequality remains, and we can easily show that a sufficient con-
dition for its satisfaction is

.30
£, = o (12)
[e 2

where Q(ci.,fa,T) is convex and positive definite in 054,fq- Here we assumed

that equation (12) is not constrained just to constant stress conditions, but
is valid in general. Rice (ref. 13), Martin (ref. 14), and others have shown,
using thermodynamic arguments, that if the kinetic (or evolutionary) law can be
expressed as equation (12), then the flow law given by

‘p 30

et ., = — a3
i acij

is a derived result.

The criteria for stability and the resulting kinetic and flow laws lead to
a vital theorem (ref. 12):

"The stress and state histories are uniquely defined for time t > ty by
the initial conditions at t = ty and the loading history."

The existence of this theorem is essential if this is to be a meaningful con-
stitutive theory for use in structural analyses.

Following the lead of Ponter and Leckie (ref. 15) and Ponter (ref. 12), we
adopted an additional constitutive assumption, that is

@ ¢ o._80
h(f )~ “a ~  of
o

(14

in which h is a hardening function of the internal force f,. The physical
origin of equation (14) in describing the local response of a crystallographic
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slip system, and the limitations that result in transferring from a local
format to a global one, are discussed by Ponter and Leckie. An additional
motive for adopting equation (14) comes from considering conditions in the
neighborhood of a stress free state, as depicted in figure 1. 1In particular,
for a "Jo-type" material (considered in the following section), the surface
(Q€0,f,,T) = constant) is a sphere of radius |fy| {n thermodynamic force
space. The gradient vector 23Q/3f, at each point on the surface where Q =
constant is directed along the outward normal. By considering the constitu-

tive assumption fq/h - -éa. the thermodynamic restriction in equation (10)
can be expressed as fofy,/h < 0, which for positive h constrains the vector

f./h to be contained within a half-sphere in thermodynamic force space. (See
f?g. 1.) The Ponter-Leckie constitutive assumption equation (14) selects the

direction of f,/h so that its projection on fo 1s a maximum; that is, the
Ponter-Leckie constitutive assumption ensures that state recovery occurs under
maximum internal dissipation in the neighborhood of a stress free state.

The extended normality structure expressed in equations (13) and (14)
provides the basis for the present development. Moreover, this structure is
assumed to hold under nonisothermal conditions.

A SPECIAL POTENTIAL FUNCTION

The governing differential equations of a theory of viscoplasticity that
accounts for internal damage are taken to be associated with the normality
structure of a potential function Q as discussed in the previous section.
The independent arguments of this potential function are the applied stress
ojy, an internal stress Bj4, a threshold strength Z, the damage w, and the
temperature T; thus, Q(oy3§,B13.Z,w), where the temperature dependence is
implicit. From a thermodynamic viewpoint, the internal stress and the thresh-
old strength are averaged thermodynamic forces, and damage is an averaged
internal variable (or thermodynamic displacement). The internal stress and
threshold strength are associated with kinematic and isotropic hardening
behaviors, whereas damage is associated with material degradation.

Moderate states of hydrostatic pressure have virtually no influence on
the inelastic response of metals.3 The stress dependence of Q can therefore
be expressed in terms of the deviatoric applied stress

S (15)

%k1j

w|—

i3 = %3 "
and the deviatoric internal stress

B1j = Bij -3 Bkksij 16)

3Moderate states of hydrostatic pressure have a strong influence on the
formation and growth of material defects and, therefore, on the damage. This
effect, however, is accounted for in the degradation function, not in the
potential function.
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where their difference

L.. = S,

i ij - Bij an

is the effective stress associated with inelastic deformation. Under condi-
tions of full isotropy, the invariants

1
I = 2 By3By;
(18
1
I3 = 3 B3B38y
and
I, = tr.x
2 7 2 "ijTii
a9
1
93 = 3 B30k
provide a complete description of the stress dependence of Q.
For the chosen potential function, the flow law is
po_ 90
eij = a°ij (20)
and the evolutionary laws are taken to be
B. .
e 1)
2 b aBij
4 aQ
™ = - a7 (22)
hz az
and
© _ 30
D = 30 (23)

in accordance with the results of the previous section. Here hp and h,

are the hardening functions for the internal stress and the threshold strength,
and D is a degradation function. Equation (20) is the flow law of Rice

(ref. 13). Equations (21) and (22) are the evolutionary laws of Ponter and
Leckie (ref. 15) and equation (23) is the proposed evolutionary law for damage.
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Since damage is an internal variable, whereas internal stress and thresh-
old strength are thermodynamic forces, the sign for equation (23) is different
from that for equations (21) and (22). The reason for this difference is a
Legendre transformation, like those used in equilibrium thermodynamics. These
equations form the foundation for a theory of viscoplasticity that incorporates
internal damage. A specific model is obtained by choosing a particular form
for the potential function.

The potential function considered for this model is

21 2
Q- IK 3 F(F) dF IK 9(G) dG + jz(l) dz (24)

where the stress dependence enters through the functions F(Eiy) and G(Bjjy).
This extends the function used by Robinson (ref. 16) to include isotropic
effects. The fact that equation (24) is a sum of integrals is consistent with
Rice's formulation (ref. 13). 1In his definition of the potential function,
each integrand denotes the rate of change of a thermodynamic displacement (or
internal variable), which is integrated with respect to its conjugate thermo-
dynamic force.

In the spirit of von Mises (ref. 17), the stress dependence of F and G
relies only on the second invariants; in particular,4

J
Fs_g_] (25)
K
and
I
G=—§ (26)
K

Equation (25) is a Bingham-Prager (refs. 18 and 19) yield condition with K
denoting the yield strength in shear. Inelastic strain only occurs when

F > 0; an elastic domain is defined by the inequality F < 0. The boundary
between these two regions, F = 0, is a sphere in deviatoric stress space; it
is the threshold or quasi-static yield surface. The origin of this sphere is
at Bjy, and its radius is K. The inelastic domain, at a fixed inelastic
state, consists of a nested family of spherical surfaces in deviatoric stress
space; each is a surface of constant F, and thus of constant Q. Viscoplas-
ticity differs from classical plasticity in that stress states that lie out-
side the quasi-static yield surface are admissible; they are not admissible in
classical plasticity.

4Many theories of viscoplasticity take F = J2/K2 instead of equa-
tion (25); thus, there is no elastic domain. The only influence that this
choice for F would have on the resulting theory is that the inequality would
be removed from the flow function.
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If the stress dependence of F and G is to be a net stress dependence
in the sense of Kachanov (ref. 1) and Rabotnov (ref. 2), then K must be a
linear homogeneous function of damage,

K=« - w) 27

where « is the quasi-static yield strength in shear. Although damage,

by definition, influences the state of stress, this influence is manifested
by a reduction in strength as exemplified in equations (7) and (27). 1In
equation (27) the reduction in strength due to material degradation competes
with the process of hardening which enhances strength.

Given the potential function (eq. (24)), the flow law of equation (20)
becomes Prager's flow equation (ref. 20),

2u é?j = f(P)Ly (28)

where u is the viscosity and f 1is the flow function. (This is derived in
the appendix.) The Bingham-Prager yield condition (eq. (25)), constrains the
flow function so that it is zero in the elastic domain. Coaxiality between

the effective stress and the inelastic strain rate is implied in equation (28).
Stability (in the sense of eq. (8)) constrains the flow function f(F) to be
nondecreasing with increasing values of F. Most theories of viscoplasticity
use the general form of this flow equation.

Given the potential function (eq. (24)) the evolutionary law for internal
stress (eq. (21)), becomes a Bailey-Orowan type relationship (refs. 21 and 22),
that is

u .
Bij = Zhb(G)e1j - rb(G)B (29)

1

where hy and rp are the kinematic functions for hardening and thermal
recovery. (Equation (29) is derived in the appendix.) The first term in this
equation, for constant hp, is Prager's rule for kinematic hardening (ref. 20).
To model dynamic recovery of the internal stress, Robinson (refs. 23 and 24)
presents a kinematic hardening function that exhibits an analytical discontinu-
ity whenever there is a reversal in stress.

The second term in equation (29) accounts for the thermal recovery of the
internal stress state. This is an anelastic response since it continues until
the internal stress has relaxed to zero, regardless of whether the current
deformation state is elastic or inelastic.

The experimental results of Mitra and McLean (ref. 25) verify the
Bailey-Orowan hypothesis that inelastic deformation occurs as a result of two
competing mechanisms: a hardening process that progresses with inelastic
deformation, and a thermal recovery process that progresses with time. When-

ever these two mechanisms balance such that 313 = 0, the internal stress is
in a steady state. Stability (in the sense of eq. (9)) constrains the func-~
tion g(G) = rp(G)/2hp(G) to be nondecreasing with increasing values of G.
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The general form of this evolutionary equation for the internal stress is used
in many viscoplastic models.

Data from metals that strain-age indicate that the evolution of the quasi-
static yield strength (defined in eq. (27)) depends on the history of thermo-
mechanical loading (ref. 26). These data suggest an evolution such that

k = T2 - (DT (30)

where the parameter T reflects the temperature dependence of the quasi-static
yield strength in an annealed state, and the function © represents the change
in quasi-static yield strength resulting from a change in temperature. The
evolution of the quasi-static yield strength given by equation (30) is path
independent whenever the following equation is satisfied:

Q.

oc2) = -7 9L N

Q.

If equation (30) is to be self-consistent, then « must be path independent
in the annealed state; therefore

(32)

Qo
~i|=1

6(Za) = —Za

where 0 < Z3 < Z. This constraint must always be satisfied; it is like an
initial condition for the functional dependence of 6.

Given the potential function (eq. (24)) and the equation of evolution for
the quasi-static yield strength (eq. (30)), the evolutionary law for the thres-
hold strength (eq. (22)) becomes a Bailey-Orowan type relationship (refs. 21
and 22),

£ :
a9 W
2= h (D (r ; Io ¥ dt) A (33)
where
. . B, .B..
_ P _ 1 1
W= opyed, U ) (34)

b

and h, and r, are the isotropic functions for hardening and thermal
recovery. (These equations are derived in the appendix.) Equation (33)
implies that the path of thermomechanical loading influences the rate of iso-
tropic hardening; under isothermal conditions it reduces to

hZ(Z)N
Z

l = - rZ(Z) (35
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The first term in equations (33) and (35) implies that isotropic hardening
progresses with dissipated work. This dissipated work, as defined in equa-
tion (34), is the sum of the inelastic work and internal work.3 The internal
work can be thought of as a continuum measure of the free energy stored in the
material that arises from inelastic deformation. MWith the exception of the
viscoplastic model of Bodner and Partom (ref. 27) (where kinematic hardening is
not present, and isotropic hardening evolves with inelastic work), all visco-
plastic models that incorporate isotropic hardening, to the best of our knowl-
edge, assume that this process progresses with inelastic path length

I(eij 51’4 dt. This is an assumption that our theoretical derivation does not
support.

The second term in equations (33) and (35) accounts for the anelastic
thermal recovery (or annealing) of the threshold strength. This function must
be constrained so that recovery terminates when the annealed value of thresh-
old strength is obtained. Stability (in the sense of eq. (9)) constrains the
function z(Z) = rz(Z)/h,(Z) to be nondecreasing with increasing values of Z.

Given the potential function (eq. (24)), the evolutionary law for damage
(eq. (23)) becomes

w = D(w) (36)

] - w

where D 1is the degradation function. <(Equation (36) is derived in the
appendix.)

Since materials do not degrade in states of sufficient hydrostatic com-
pression, in general the degradation function ought to switch off the evolu-
tion of internal damage when a critical state of hydrostatic compression is
reached. Equation (36) implies that damage evolves with dissipated work, as
defined in equation (34). Hereditary effects are included through the depend-
ence of dissipated work on inelastic strain and internal stress; thus, equa-
tion (36) has the potential to account for time-dependent effects in a natural
way. Stability (in the sense of eq. (9)) is satisfied if D(w) does not
increase with increasing values of w; but this is not observed. Initially
the dissipation function is virtually a constant, and the material response is
stable for all practical purposes. However, near the end of life, the value
of the dissipation function explodes, thereby leading to material instability
or failure. This is not to say that this theory is undesirable, for it is
precisely this instability that continuum damage mechanics attempts to
characterize.

Many researchers have used inelastic work as a parameter to characterize
fatigue damage (e.g. refs. 28 to 31). The equation of damage evolution given
in equation (36) differs from these earlier, largely empirical, energy crite-
ria by including the influence of internal work. Albeit this is a lesser

SIn accordance with equations (14) and (21), the quantities -81 /2h
denote the rates of change in the thermodynamic disp]acements (or interna? var-
fables) conjugate to the thermodynamic forces Pj3j. Therefore, the quantity

- 3138j,/2hb can be interpreted as the rate of change in the internal work.
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effect than that of inelastic work, nevertheless, it is believed not to be a
negligible one, especially when time-dependent effects are present. Addi-
tional insight is gained from an equivalent expression for the dissipated work
rate (eq. (34)), that is

. D I2

W = zijeji + rb(G) Fg (Q) 37
which is obtained from equations (29) and (34). The first term in this rela-
tionship evolves with inelastic deformation and is a measure of fatigue damage.
(See fig. 2.) The second term evolves with time at internal stress (I 1is the
second invariant of internal stress) and is a measure of the interactive creep
damage. Thus, the interaction between fatigue and creep damage is specified.
The temperature dependence for this measure of creep damage is accounted for,
to a large extent, in the thermal recovery function rp.

CONCLUDING REMARKS

A theory of viscoplasticity has been derived from conditions of stability
and physical arguments, for an initially isotropic continua that exhibits
internal damage. This material degradation was incorporated through the
Kachanov-Rabotnov concept of a net stress. Damage was assumed to be an inter-
nal variable that evolves isotropically according to a Ponter-Leckie type con-
stitutive assumption. A potential function was considered that extends the
Robinson viscoplastic model by including the effects of isotropic hardening
and material degradation. The yield strength was not considered to be an inde-
pendent variable; rather, it was assumed to evolve with changes in threshold
strength and temperature.

We determined that inelastic strain evolves according to a Prager type
flow equation, and that Bailey-Orowan type kinetic equations govern the evolu-
tion of both internal stress and threshold strength. The internal stress har-
dens like a Prager hardening rule, whereas the threshold strength hardens with
dissipated work - not inelastic path length - at a rate that depends on ther-
mal history. Internal damage was shown to evolve with dissipated work leading
to a loss of material stability. Dissipated work is the sum of inelastic work
and internal work. Internal work is a continuum measure of the free energy
stored in a material due to inelastic deformation.
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APPENDIX

This appendix provides the derivations for the flow and evolutionary equa-

tions given in equations, (28), (29), (33), and (36).

By using equations, (15), (17), (19), (24), and (25), the flow law

(eq. (20)) can be written as
80 oF 83, oI, 8.

P
€ =
1y ~ oF 8J2 oL, asmn ao1j

(o]

by the chain rule, where

gg_g Kf(F)
aF 2u
aF 1
J, K2
%2
azuv uv
Py o
asmn vm-un
and
P _ 5 .8 . - x5 &
aoij T onitmy  3Tnmij

Combining these equations results in

©

2p ofy = £CF) Iy

which is the flow equation (28).

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

By utilizing equations (16) to (19) and (24) to (26), the evolutionary

law for internal stress (eq. (21)) can be written as

- —oh (© (@M 2w mae D2 ) e
ij b aF dJ, axuv aan 3G aI, aan anij
by the chain rule, where
TR
d mn vm-un
a0 2
36 = K g(Q@)

(A8)

(A9)

(A10)



&L (ATT)
2 K
812
—% _ B (A12)
aan mn
and
aB
nm 1
aBij = snismj - 35nm51j (A13)
Combining equations (A2) to (A4) with equations (A8) to (A13), we obtain
. L..
= 1l
Bij = hb(G)f(F) ” 2hb<G)g(G)Bij (A14)
which when joined with the flow equation (eq. (A7)) results in
- .
Bij = 2hb(G)eij - rb(G)Bij (A15)

where rp(G) is defined to be 2hy(G)g(G). This is the evolutionary equation
for internal stress given in equation (29).

We define the following expression:

\ 80 8F 80 3G
N=—K(3—Fa + 55 aK) (A16)

L..Z
F _ _ iiit (A7)
aK 3
K
B, .B..
9 Tij ji (A18)
3K 3

which when substituted into equation (A16), along with equations (A2) and
(A10), gives

. F(P)L,,L
W= — 3 aeB

o (A19)

11841
By substituting equations (A7) and (A15) into this relationship, it becomes
o BiyBy;
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which can be expressed as

. BBy
IR T R i L
W w1351 = TR © (A21)

because of equations (15) and (16), and the fact that .1j and B1J are
deviatoric. This is the rate of dissipated work given in equation (34).

From equations (24) to (27), the evolutionary law for threshold strength
(eq. (22)) can be written as

. o0 9F 80 3G ) 3K
Z=-h (D) K— + 5 BK) + z(Z)] (A22)

by the chain rule, where

K _ K dx
37 = % 3 (A23)
and where (from eq. (30)),
3c t s :
37 © r - 57—T dt (A24)
0

Joining equations (A16) and (A22) to (A24) results in

. t :
98 W
= hZ(Z) (r - 0 37 T dt) - rz(Z) (A25)

where r,(Z) s defined to be h,(2)z(Z). This is the evolutionary equation
for threshold strength given in equation (33).

By using equations (24) to (27), the evolutionary law for damage
(eq. (23)) can be written as

aQ gf 30 3G} 3K
= D(w) (5—— K * 3¢ BK) (A26)
by the chain rule, where
K _ K
% - " T-w (A27)
Combining equations (Al16), (A26), and (A27) results in
w = D(w) (A28)

T -

which is the evolutionary equation for damage given in equation (36).
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Q(O,fa,T) = constant

fcx/h(fcx) = - aQ/afa

. B
fa/h(fa)
Figure 1. - In the stress free state f,/h(f,) provides maximum internal dis-
sipation during state recovery.
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Figure 2. - Dissipated work in cyclic shear in the absence of thermal recovery.
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In this research, a simplified uniaxial strain-controlled creep damage law is
deduced with the use of experimental observation from a more complex
strain-dependent law. This creep damage law correlates the creep damage,
which is interpreted as the density variation in the material, directly with
the accumulated creep strain. Based on the deduced uniaxial strain-controlled
creep damage law, a continuum mechanical creep rupture analysis is carried out
for a beam resting on a high temperature elastic (Winkler) foundation. The
analysis includes the determination of the nondimensional time for initial
rupture, the propagation of the rupture front with the associated thinning of
the beam, and the influence of creep damage on the deflection of the beam.
Creep damage starts accumulating in the beam as soon as the load is applied,
and a creep rupture front develops at and propagates from the point at which
the creep damage first reaches its critical value. By introducing a series of
fundamental assumptions within the framework of technical Euler-Bernoulli type
beam theory, a governing set of integro-differential equations is derived in
terms of the nondimensional bending moment and the deflection. These
governing equations are subjected to a set of interface conditions at the
propagating rupture front. A numerical technique is developed to solve the
governing equations together with the interface equations, and the computed
results are presented and discussed in detail.
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1.  INTRODUCTION

Tertiary creep involves the process of fracture leading ultimately to
complete failure, and is associated with local reduction in cross-sectional
area and more importantly with the nucleation and growth of voids and
microracks along grain boundaries. This failure mode Jleads to eventual
collapse of a structural component and is known in the literature as creep
rupture or stress rupture. In order to meet the demands of designers and
engineers concerned with the safety of equipment operating at elevated
temperatures, researchers in recent decades have conducted extensive creep
rupture experiments from which they hope ta extract some wuseful
"extrapolation" parameters. Such parameters are '1nevitab1y limited by the
laboratory-allowed time scale and by the usual scatter of the empirical data,
but they are employed to estimate the appropriate stress and temperature
requirements for the practical service lives of equipment 1in operation.
Amongst such extrapolation parameters methods are the ones of Larson-Miller
(1952) [1], Manson-Haferd (1953) [2], Orr-Sherby-Dorn (1954) ([3], and many
others. Manson and Ensign [4] have presented an interesting review on the
progress in extrapolation procedures for creep vrupture; an excellent
discussion of these is also given in the text by Conway [5].

In parallel with the development cited above, other researchers including
some metallurgists have attempted to define and quantify a suitable variable
which describes the damage state and measures the extent of damage in
materials undergoing creep. The major hurdie in this line of research is the
manner by which ones bridges the gap between the scalar damage variable
obtained by macroscopic creep testing and the microscopic processes involved
in the nucleation and growth of voids and microcracks at grain boundaries.

Such variables are expected to be able to characterize the damage state from
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the physical and quantitative points of view, and furthermore to provide a
useful tool for analytical modelling via continuum mechanics. Amongst such
approaches are Robinson's linear cumulative creep damage law (1952) (6],
Hoff's ductile creep rupture theory (1953) [7], Kachanov's brittle rupture
theory (1961) [8], Robotnov's coupled damage creep theory (1969) [9], and many
other modified theories such as the one due to Leckie and Hayhurst (1974)
{10]. Comparative studies of the various theories may be found in [11-13].
Recently, scientists have observed a close relation between density change and
the nucleation and growth of voids and microcracks associated with creep
damage in polycrystalline materials. Extensive efforts have thus been made to
jdentify and quantify creep damage in terms of the density variation which is
attributed to cavitation in a creeping material. Following this concept,
Piatti et al [14] developed a refined experimental technique to measure the
density variation for use as a definition of creep damage. Using data
obtained in this manner for steel, Belloni et al {[15,16] proposed a
statistically-based damage law in a complicated power law form similar to the
one presented in Woodford's parametric study of creep damage [17].

Because of its inherent mathematical complexity, the creep damage law
proposed in [15,16] is somewhat inconvenient for analytical treatment within
the framework of continum creep damage mechanics. In addition, some
arbitrariness remains in the determination of the material constants appearing
in this damage law (see [18]). Accofdingly, the first task in this work is to
obtain a simplified yet still useful damage law. This task is addressed in
Section 2 where we argue first from the microscopic point of view that density
variation certainly is a proper index of damage in a material undergoing creep
deformation. We then propose a simplified uniaxial strain-controlled damage

law by introducing some assumptions based on experimental observation
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associated with the original damage law, and this strain-controlled damagelaw
is demonstrated to be closely related not only to the original damage law but
also to Kachanov's damage law (see [8]). We conclude Section 2 with the
observation that, whereas a typical boundary value problem suffices to
represent the problem in "the first stage of creep damage", we encounter in
"the second stage of propagation of the rupture front" a moving boundary
problem similar to the Stefan problem in heat conduction [19].

Utilizing the above strain-controlled creep damage theory, we present in
Section 3 a continuum mechanics model for the creep rupture analysis of a beam
resting on a high temperature elastic Winkler foundation which generates a
prescribed thermal gradient in the thickness direction. Based on technical
Euler-Bernoulli-type beam theory, we derive in Section 3 a set of governing
differential equations for a region with a moving boundary (rupture front)
which is prescribed by a set of interface equations. Owing to the inherent
nonlinearity of the problem, closed form solutions generally do not exist.
Accordingly, a successful treatment of the problem requires the application of
a suitable numerical technique which is then presented in Section 4. In the
latter part of Section 4, we consider a simpie case for which a closed form
solution does exist. We then present detailed numerical results for the
problems in which temperature gradient is taken 1into account and the
foundation is either present or absent. The results consist of the
nondimensional forms for bending moment, deflection, and the geometric shapes

of the rupture front.

2.  STRAIN-CONTROLLED CREEP DAMAGE
2.1 Creep Damage Law Under Uniaxial Stress

Virtually all load-bearing structural components operating at elevated
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temperatures undergo the typical 3-stage creep phenomenon. Various
phenomenological 1interpretations of the creep process have been devised,
usually employing the concept that creep is essentially a competition between
strain-hardening and recovery [20]. It is well understood that at elevated
temperatures a crystalline solid may deform 1in accordance with several
mechanisms such as dislocation creep and diffusion creep. Each such mechanism
is most active is some range of stress and temperature [21], such that within
certain regions of the stress-temperature space one mechanism is said to
dominate the others. The pictorial maps constructed by this concept are known
as Ashby's deformation-mechanism maps [21,22]. Raj and Ashby [23] have
pointed out that the creep mechanisms mentioned above are in fact an
"accommodation process" for grain boundary sliding. When a shear stress
causes sliding to occur at a generally nonplanar grain boundary, some
accommodation process (such as diffusional flow or plastic flow) is necessary
to heal the crystalline Structure at the deviation of the boundary from a
perfect plane. In the event that this accommodation process does not develop
fully at a boundary deviatidn during sliding, an "incompatibility" results in
the form of voids and wedge cracks along the grain boundaries which are
oriented roughlyl perpendicular to the tensile axis. As the material is
strained further the coalescence of voids and cracks eventually leads to
intergranular creep fracture. Clearly, as the cavity volume increases during
the process of tertiary creep and eventual fracture, the material dilates. In
this section, we shall focus on a strain-controlled constitutive continum
damage law based on this close relation between creep damage and cavitation
induced dilation in materials.

The type of damage described above 1is associated with power-law or
dislocation creep [23,24]. Steady dislocation creep under constant uniaxial
tensile stress o, 1is. found experimentally to obey the constitutive

141



relation{25]

. n
e = AT o, (1)

in which n is the constant stress power. The reciprocal viscosity coefficient

A(T) is expressed as the Arrhenius equation
*
A(T) = A exp(-AH/RT) (2)

where A* is the relatively temperature insensitive pre-exponential cofficient,
AH the activation energy for creep, R the gas constant and T the absolute
temperature. Equation (1), which is also known as Norton's steady creep law,
will be employed to describe  the creep deformation process in the problem
considered later in this work.

From the phenomenological point of view, creep rupture can be separated
into two categories. Failure at high stress and low temperature is
characterized by pronounced lateral contractiens and the first continuum model
for this process is known as Hoff's duétile creep rupture theory (7]. OnAthe
other hand, 1low stress levels together with high temperatures result 1in
brittle type of rupture with 1little lateral contraction, and the first
phenomenological theory for this process was formulated by Kachanov [8]. We
shall not consider Hoff's theory further here (ample discussion is given in
[13,26]), but we shall now review Kachanov's theory briefly. Kachanov defined

the damage variable « for a one-dimensional test specimen in accordance with

A -A A
° e e

A A

° (-]

142



where A_  and A are, respectively, the original and the effective cross
sectional areas carrying the load. Clearly, cavitation creates new internal
surface area which in turn reduces the effective cross-sectional area carrying
the load. Thus, the material in its virgin state has the damage « equal to
zero, while the damage in a completely deteriorated material approaches
unity. A power law for the damage-rate was postulated by Kachanov for

variable one-dimensional stress as

ﬁ=ngv (3)

l1-w

where C,v are material constants, and where C may be temperature dependent.
Assuming that the material is initially undamaged, integration of the above
equation gives

1 - (1-0)"*= C('|+\>)I§ o’(t')dt! (4)

As pointed out earlier in this section, a close connection exists between
creep damage and the cavitation induced dilation of a material. Belloni et al
[15,16] have employed material density variation as the measure of damage in a
creep material using refined techniques. They proposed a damage law at

constant stress o, 1in the power form for the wuniaxial tension test

(]

D=ce o t (5)
C o
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where D= -4p/p,, p, is the density of the material in the virgin state, and
Ap is the change in density due to the volume dilation of the material. In
eqn.(5) e denotes the creep strain, and ¢, a«,v,8 appear to be relatively
insensitive to temperature, but c¢ is highly temperature sensitive. In analogy
with Kachanov's damage variable « , the damage D has value equal to zero in
the virgin state and is equal to a critical value at rupture Dr, which is a
material constant. Employing statistical regression techniques, Belloni et al
were able to correlate their experimental data with damage law (5). A close
inspection in.eqn.(5), however, reveals that some arbitrariness exists in the
determination of the material constants (for 'details see [18]). This
arbitrariness 1is a consequence of treating €. and o, as independent state
variables in eqn.(5), without considering the constitutive creep law. One
possible way of eliminating this arbitrariness is outlined by the sequence of
simp}ifications given below.

First, based on the findings in [16] and related work [26,27] we shall

make the simplifyig assumption

Yy = 4n (6)
It will be shown later that eqn.(6) together with v=n in eqn.(4) establishes
an equivalence between Kachanov's formulation and the current one. We further
assume that steady creep as described by eqn.(1) completely dominates the
deformation behavior, i.e., the material is non-Newtonean viscous. A

combination of eqns.(1) and (5), together with assumption (6), then gives

_ c ( tc+6 7
= — cs) (7
A(T)

]
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or

C atd
D = c (8)
S

-3
A(T)

in which eg is the creep strain under the steédy creep condition. It has

been found [28] that, for the rupture mechanism considered here, the product
of steady-creep-rate, és’ and the time-to-rupture, tR’ is a constant, i.e.

et =¢

s R MG
where CMG is known as Monkman-Grant constant which has the dimension of

strain. This relationship holds true for a wide range of temperature and

stress. Therefore, at rupture eqn. (7) gives

c a+d

D= —5 (Cye (9)
A(T)

where Dr is the critical value of damage at rupture. Belloni et a1's»data
[15] showed that the critical value of damage in the high temperature range is
relatively insensitive to temperature. The temperature independent character
of both CMG and Dr immplies that the B/A(T)6 in eqn. (9) must also be
temperature independent. Thus

c

A(T)

where ¢, is a temperature independent material constant. Substituting this

back into damage law (8) we then get the simplified form

D==c ¢ (10)
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Although a significant simplification has been obtained, damage law (10)
is still physically plausible. Note that, although damage is an explicit
function of strain along, it is an implicit function of temperature and stress
via creep constitutive law (1). In accordance with eqn.(10), a material
exposed to stress experiences damage directly related to the creep strain, and
rupture occurs as the available creep ductility is exhausted. Hanna and
Greenwood [29] showed, for copper with pre-nucleated cavities subjected to low

stress and with the creep rate linearly related to the stress, that

- < € (1)

Although a surprising analogy appears to exist between eqns. (10) and (11),
conclusions may not be easily drawn on the material constants in eqn.(10).
However, it does appear very reasonable to postulate that creep damage, as
measured by density variation, be expressed explicity as a function of creep
strain.

In many engineering practices, however, the stress may be varying with
time due to effect such as load variation and stress relaxation. The
extension of the original creep damage law, eqn.(5) , to the case of time
dependent wuniaxial stress has been presented in [30]. In the case of
simplified eqn.(10) it suffices to employ the integrat form of creep strain
for variable stress, and thus integrating ;s = A(T)o(t)n we obtain

t at§
D(t) = C.{ j A(T) cn(t')dt'} (12)
(]
Here, the reciprocal viscosity function, A(T), is retained inside the integral
sign, in order to allow for the situation in which the temperature varies with
time. If v=n in Kachanov's theory [see eqn.(4)], eqns. (4) and (12) assume a
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very similar form; a more detailed comparison of strain-dependent theory with

Kachanov's approach is given in [31].

2.2 Propagation of a Creep Rupture Front -- The Moving Boundary Problem

A nonun1formrstate of stress may be introduced by the irregular geometry
of a structure, nonhomogeneous material properties, and nonuniform external
loads. Under such circumstances the creep damage within the structure would
be a function of the space coordinates in addition to time. Creep damage
starts accumulating in the structure as soon as the loads are applied. As
time elapses, the creep damage at some point within or on the surface of the

structure would first reach the critical value, D at which rupture takes

r'
place. This initial rupture time, tI’ is determined 1in accordance with
eqn.(12) as ¢
I a+|8
Dp = C{f A(T) «“(mw} (13)
o

A rupture front then develops generally as a smooth surface, and starts
propagating through the structure until the entire structure collapses at some

time t It is readily seen that the lifetime of a structure may be divided

II-
into two time intervals or stages, i.e., 0 < t < t and t;< t <ty In

the first stage 0 < t < t which has been termed the stage of latent

I'
failure by Kachanov [8] or the incubation period by Johnson [32], the creep
damage is assumed to be less than the critical value (Dr) everywhere 1in the
structure. In the second stage tI <t <t which has been termed the

stage of propagation of rupture, a rupture front § along which
(14)

travels through the structure and complete collapse occur, at tII‘
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A condition on the direction of travel for the rupture front } may be
obtained by taking the total time derivative of eqn.(14). Accordingly, we
obtain

8D , @D dN _
at = aN dt

in which N designates the coordinate normal to the rupture front. Similarly,

the geometry of the rupture front § is constrained by

dx
8D _ 9 7§ _
at T ox| 3t 0 (15)

in which the xj are the space coordinates.

This type of problem, more generally called moving (free) boundary
problem, is well-known in heat conduction [19] with phase change and is known
as the Stefan problem. Although the Stefan problem and the creep rupture
problem share analogous mathematical characteristics, there are some
significant physical differences. Instead of the temperature profile of the
Stefan problem, we are now more concerned about the mechanical behavior of the
structure, such as the coupling between the stress redistribution and the
speed of the mov1n§ boundary (rupture front). Owing to the inherent
nonlinearity of the problem, closed form solutions generally do not exist for
moving boundary problems with a finite damain. Accordingly, a successful
treatment of such problems will require the application of a suitable
numerical technique. A thorough discussion and comparison of numerical
methods currently used for moving bodndary problems is given in [33]. Details
of the numerical technique which we shall choose will be disclosed in

subsequent sections as the need arises.
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3. CREEP RUPTURE IN A BEAM ON A WINKLER FOUNDATION
3.1 Statement of the Problem

The beam problem to be studied is depicted in Fig. l1a. We consider a
beam continuously supported by an elastic Winkler foundation, which exerts a
restoring force as the beam deflects under the action of a distributed lateral
load. Since the foundation is at an elevated temperature, a prescribed
thermal gradient is assumed to exist in the z-direction (thickness) of the
beam. It is assumed that this prescribed temperature distribution through the
thickness of the beam is independent of time during the deformation and
rupture processes. The physical model used to analyze the problem is shown in
Fig. 1b. Here, the elastic foundation is modelled as an infinite series of
infinitesimal springs with an elastic constant K [34], 1.e. as an elastic
Winkler foundation. Creep deformation starts to accumulate in the beam as
soon as the lateral load is applied. In geophysical research this type of
flexure model has recently yielded some interesting results on lithospheric
flexures (eg. see McMullen et al [35]), where the temperature variation with z
is due to the geothermal gradient and the Winkler foundation is due to the
underlying mantle. In addition to the creep deformation, we shall also
consider the effects of creep damage using the concepts previously developed.
In brief, it is our major goal here to explore the propagation of a creep
rupture front in a non-isothermal beam under distributed lateral load. During
the second stage of damage the beam 1is thinning in a non-uniform manner, and
accordingly the cross-section of the beam is not constant (see Fig. 1c). It
will be seen 1later that a moving boundary problem is encountered as a
consequence of this thinning behavior.

The problem presented here is extremely complex in nature. In order to

reduce the mathematical difficulties somewhat, we present below a series of
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simplifying assumptions. Firstly, we assume that the material in the beam
obeys the Norton law of steady creep, with viscosity dependent on the
prescribed temperature gradient. Although the beam 1is of non-uniform
cross-section during the second stage of damage, we assume that technical
Euler-Bernoulli-type beam theory 1is valid throughout the entire process of
creep damage. We also restrict our consideration to the case of small
deformations and small rotations. Furthermore, we assume that no major cracks
form in the unruptured segment of the beam during the process of rupture, and
thus the effects of stress concentration at crack tips are excluded from the
current study. Finally, we assume that the shear stresses are negligibly

small when compared with the axial stresses due to ?lexure.

3.2 Mathematical Formulation of the Problem
The constitutive law governing the creep deformation in the beam is

assumed to be of the Norton type [eqn. (1)]:
. n
€. = A(Z)o (16)

Here the stress state o may vary with time as well as with the x- and
z-coordinates. Note also that the reciprocal viscosity coefficient function
A(z) is an implicit function of z via the temperature distribution (see Fig.
1c).

The geometry of the beam 1is shown is Fig. 1c¢; it has a rectangular
cross-section of width b and thickness h and the length of the beam is 2L.
For simplicity we will consider symmetric loading and thus only symmetric
deformation in this work, and therefore only half of the span of the beam need

be considered. Employing Euler-Bernoulli-type beam theory with h constant, we
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may derive the expression for stress in terms of the bending moment M as

1l
M z-eon
P 17
o J'O(A(Z)) (17)

where e, 1s the distance to the neutral axis (marked as N.A. in Fig.1c).

Also, the governing equation in the bending moment M is obtained as

3
asM M. 3P (18)
axe0t K(Js ) ax* at
o

where P is the applied lateral 16ad, and we have introduced the notation for

flexural rigidity

. llo z'-e
u’% =b f [ZT;T;]n z'dz’ (19)
o

The R.H.S. of eqn.(18) vanishes if we assume that the applied lateral load

P(x,t) is expressed mathematically in the form

P(x,t) = P, f(x) H(t) (20)

where P, is the maximum load at x=0, f(x) is the symmetric shape function and
H(t) represents the Heaviside unit step function. For a viscous material

governed by eqn. (16) we have the initial condition in M as

daM(x,0") (21)
e = -f(x)
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For further simplicity, we also assume that the beam is simply supported at
both ends and that the 1lateral 1load vanishes at both ends. Due to the
symmetric nature of the probltem as previously mentioned, the boundary

conditions follow as

aM _ M

ax 933 -0 at  x=0 (22a)
02M

g3 " M=0 at x=L (22b)

It is important to point out that the neutral axis does not coincide with
the centroidal axis in this beam problem since the viscosity is inhomogeneous
due to its dependence on a non-uniform temperature distribution [36]. Since
the axial force is zero in this problem, the distance to the neutral axis €,

may be determined in the first stage of damage from

o z'-e 1
I Gl e =0 (23
[ o]

It is our task now to extend the above mathematical formulation, which is
Qalid only for the first stage of creep damage, into the second stage of creep
damage. The shear stresses in technical beam theory are usually negligibly
small when compared with the axial stress. It is thus reasonable to utilize
the uniaxial strain-controlled damage law. The creep damage then follows from

eqn. (12), which with the use of eqn. (17) yields

t
M o+ 8
D(x.z.t) = ¢ {j [ (z—eo)dt’} (24)
P o
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Experimental evidence [37] has shown that there 1is virtually no creep damage
in a crystalline material under compression. Therefore, the above equation is
valid only 1in the region eo<zgh0 (see Fig. 1c), while the creep damage is
assumed to be identically zero in the remainder of the region. The initial

rupture time t. may now be obtained from the implicit relation

I

X+ §

t
I
Der = ¢ fJ' [;f]n (z-eo)dt'} (25)
o [+]

where the initial rupture clearly occurs at the midpoint of the bottom fiber
(i.e. x=0 and z=h°), since it is there that the tensile strain is maximum in
magnitude.

Rupture thus starts at the point x,z=0,h0, and then develops into a
moving front which 1in turn causes the beam to thin (see Fig 1c). We shall
call the region 0<x<&(t) the thinning zone, and the remaining interval
5(t)<x<L the uniform zone since this interval is of uniform thickness. The
quantities h and e; which designate the thickness and the distance to the
neutral axis within the thinning zone of the beam, are clearly function of x
and t. Furthermore, the flexural rigidity 0 in the thinning zone is also a
function of x and t since it involves h and e. Governing equation (18) with P

given by eqn. (20) may now be restated in the thinning zone as

+xdhHn - o 0<x<8(t),  tylt (26a)

+ K(=—) =0 5(t)<x4L, tI_<_t (26b)
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where

hi(x,t)
J-j(!pt) =} f
[+]

[Z"Q(!.t)

1
IO pa, oG, gt (27)

It ts readily seen that governing equations (26) are subjected to a
moving Jjunction, which separates the thinning zone from the uniform zone.
Note that the upper 1imit h(x,t) and the quantity e(x,t) in integral (27) are
changing and unknown functions, and thus we must obtain conditions which
govern the variables h,s, and e. It may be shown that if the rupture front J
is prescribed as

T z = h(x,t) tydt

eqn. (15) can be rewritten as

a o ap
at "3t oz ° trt (28)

Substitution of the expression for damage [eqn. (24)] into the above equation

yields after some manipulation

LN

at F \

O Ly

(‘%)ndt‘} ., 0<x(B(t), o<t (29)

The creep damage at the junction point Q in Fig. lc with coordinates

x=8(t) and z=h_ should be equal to the critical value, i.e.

D(x,z,t) =D, x=b(t), z=h,, tylt
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Following the same procedure employed for eqn. (29), the total time derivative

of this equation now gives

t
a8t) o, [ tongM

Note that the quantity J(x,t) does not appear in the above equation as it is a
constant at the junction point Q (see Fig. 1c).
Finally, eqn. (23) for the distance to the neutral axis of the beam now

becomes for the second stage of creep damage

h(x,t) 1
j~ [z'-e(x.t)]n ,
S YPORE dz’' =0 , 0<x<8(t), ty&t

Differentiating the above equation with respect to time we obtain the equation
1 _
1 n n !
de . h-e ]n (_a_li) / II (z'-e)
at A(r)d ot \ 1

° azn1®

where A(h) is the reciprocal viscosity function A(z) evaluated at z=h.

We have thus obtained governing equations (26) subjected to jnterface
equations (29), (30) and (31), and we must solve these equations for the
unknowns M,h,8, and e with boundary conditions (22). Although boundary
conditions (22) are not applied at a moving boundary, we do have the interface
equations which are applied at the moving junction. We shall thus use
familiar terminology and call this problem a Stefan-like problem. It is
readily seen that the present nonlinear problem 1is very complicated and
numerically cha]]enging;‘we shall present its numerical solution in the next

section.
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4. NUMERICAL TECHNIQUE AND RESULTS
4.1 Solution Technique

For convenience we introduce the following nondimensional variables:

- t - - ¢ &
t=—, (t =1) = - = —
ty I ) h, 8 L
- x - D
=3, (0G) b=— . (04Bc1)
cr
- z - A(z)
z = ‘l: » (0&2‘_1) K = m (32)
h : - f
k= z R (E°=1) $ =‘F
v-X B
Po poLz

In the above, \;* represents the flexural rigidity of a beam at a uniform
temperature Tu’ where Tu is the temperature at the upper surface of the

present non-uniform beam. Thus

* nbh
S = 1 (33a)
n
2(2n+1)[2A(2=0)]
and
1 .
(12)2;4.lh sr-% 2
- +2n 2'-¢ 9N -
= [ ] z'dz’

We now follow the practice that unless otherwise noted all variables without
bars appearing in this section from this point on will be dimensionless

variables. In accordance with the above definitions, governing equation (18)
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may be reformulated in terms of dimensionless variables as

s Min
2)8 o 34
ax‘at * Bq(po) o ( )

in which we have introduced the dimensionless quantity

~1;2n+2
Kt{Py 'L

B=— (35)
o

The variables appearing on the R.H.S. of eqn. (35) are all in dimensional
form, andt¢: is evaluated by setting h=ho in edn. (33a). Note that the
quantity B will be the key parameter in the present nondimensional study.
Employing the same techniques presented in [35], we may eliminate the
spatial partial derivative appearing in eqn. (34) for the first stage. We

thus obtain the integro-differential equations

aM ‘ " 1 M
—;7= % { F(x'!')ﬁiF)ndx' + I G(x.x')(——)ndx'} (36a)
[+ [} o o
where
F(x,x') = —(x-x")’ (36b)
6(x,x') =3x> - 3x7x* - x'’ +3x'" -2 (36¢)

The numerical solution to the above equation with geophysical data for a beam

of constant thickness was presented in [35]. Here, we will employ a numerical
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technique other than the one presented in [35]. A discretization scheme using
the method of lines in space is obtained from the above eqn. (36a). It

follows that

M, Xy 1
i g/ M .a M\n } (37a)
—_— = F(x;,x") (—)"dx’ + | G(x;,x*)(=)"dx'} ,
at & \{ SN J otz 5
i=1,2 N.
» P A 2
oM
i
it 0 N2
where

1
x; = (i-1)Ax = E (i-1)

Note that the first integral in eqn. (37a) vanishes at i=1, egn. (37b)
corresponds to boundary condition (22b), and N2 designates the number of
spatial increments. Evaluating the integrals by the Newton-Cotes formulas, we
thus obtain a system of ODE's which may be solved by Gear's stiff ODE
algorithm [38]. The result obtained above furnishes the solution in the first
stage of damage, and provides the initial data for the second stage of damage.

Returning now to eqns. (26), we may again integrate out the spatial

derivatives to obtain for the thinning zone in the second stage

oM x 5(t)
B ’ M Ry e . (M Dyx?
7t =3 {J- F(x.x )Sf) dx’' + I G(x.x )Ez) x
(] [+
( ¥ ngee (38a)
+ G(x.x") (g)%ax’ 0Lx<a(t), 1<t
5(t) °
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and for the uniform zone

- 5(t) x M
= B 1y (M ’ Yy ()8 '
2t 6 {I F(x,x )(Z)ndx + f F(x.x )('ﬁo) dx
o 8(t)
5(t) 1 M
+ j G(x.x')ﬁ%)ndx' + j G(x.x')ﬁ;r)ndx'} , 0<x<8(t), 1<t (38b)
o 5(t) °

where f was defined in (33b), and F(x,x'), G(x,x') were defined in egns. (36
b,c). Note that we have used continuity of M and its derivatives at the
junction point, e.g. M(x=6(t)+.t) = M(x=8(t) ,t). In other words, the bending
moment, shear force, deflection, and slope of the beam are all continuous at
the junction point.

In order to mathematically fix the moving junction and the 1limits of
integration appearing in eqns. (38), we employ the concept of Landau's

transformation [39] and introduce the variable changes

[ =—— , for thinning zome 0<x<8(t) (39a)
8(t)
x-8(t) . ; 29
NS T ¢ for wm form zone §(t)<x<1 (39b)

Under such a transformation the partial time derivative a( )/at is replaced

by the substantial time derivative D( )/Dt in accordance with

8( ) D() dx a()
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With the use of the chain rule, the transformed governing equations are

obtained for the thinning zone as

4 1
DM ds(t) oM B f oy (Myn ' ’ H Nare
ki — 4+ s(t) [ Fee.z) G az'+8(t) § G(z,3") ()74t
Dt _ 5(t) dt ac O { AN 4 { F
1 .
+[1-8(t)] I G(c.n')&;—)ndn' } ., 0<£z<1, 1t (40a)
A
[+]
and for the uniform zone as
1
DM 1-n  as(t) oM p J . n
Dt " ToE(o gt an T 8 \8(8) f Fan.ch (hRaseli-6(e)] jp(n.wj— s
(o] (]
1 1 M
+8(t) f G(q,cn)(ﬂ)ndcr+[1-5(t)] f G(n n')(——)ndn'} 0<n«1,
. , (40b)
o 'f ° Jo 1t

Similarly, an application of Landau's transformation to interface

equations (29),(31) yields

Dh 4 ds(t) oh
Dt B0 ar - Pre f.f[;]“dt} . 0<r<l, 1<t (41)

and

Dt  8(t) dt 3z "ot T 5o e A(h)
1
}(z'-e) \
S Y R T
{ o) < 1<t (42)
[A(z")]
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The transformed interface equation (30) has the slightly different form

das(t)

at at ' (43)

t
= -5(t)M® /. {n I yn-1 E—M- dt'\ =1, 1<t

(o]
since &§(t) involves only the single variable t. By virtue of variable
changes (39), the substantial (material) time derivative D( )/Dt appearing in
the above transformed equations possesses a numerical value identical with
[a( )/at]c or [a( )/at]“. It should be noted that fixing the moving junction
unfortunately leads to governing equations of even more complicated form, and
the above set of equations surely will not have a closed form solution. A
numerical scheme will now he presented.

First, the method of 1lines in space [40] is utilized to eliminate the
spatial derivatives from the above integro-differential equations in
accordance with the discretization scheme shown in Fig. 2. Accordingly, we
employ the central finite difference approximations for the interior points

and one-sided three point formulas for the end points A,B and the junction

point Q (see Fig. 2). Accordingly, eqns. (40-43) yield the followina:

t
ds(t)
= -1 1\ =
dt 24% 8(t) M3 / {“ Jougmong p-amg_ped;at J i=Nj+1  (44)
[o]
1 1
g 5(t) [ 60zs ) MhBacr+l1-8(6)1 [ G(gun’) () Ban’f, =1
Dt [ i’ N CisM P n’'r. =1 (45a)
[+] o o
DM L 54
i i as(t) : B{ vy (Mymg e
= M., +M. 41+ 5(t) F(z.,7") (F)"dL
Dt 2AC &(t) dt M54 t¥ 1 5 { i $
(45b)
1 1
Myn, .. .)(b_(_)nd ' i=2,3,...,N
+8(t) [ 6z5, 50 (@Racr+l1-6()] [ etzym Foman BaeeNg
()
[o] (o]
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DY 5 as(t) R
- 4%
Dt ZAI; 5(t) dt [Mi"z 4“1_1"‘3“1]"‘ {5(t) IF(CioC )S}) dc
[+
1 1 y
+8(¢) jc(;i.c-)&’é>nd;-+[1-a<t>1 fG(ci.n')(j—)“dn
o o °
DMy 1-ny a8(t) B/ ; M
= - 1y (Myn ’
Dt 2An01-6(t)] 4t My41-My-11+ § \s(t) I Flng. ¢ )ﬁﬁ) a
(o]
ny y 1
+[1-8(0)1 | Fing.n') (G n'+8(¢) fc(ni.;')g)ndc'
o ° o
1 M
+[1-8(t)] js(ni.n-)(f)ndnv } 1=Nj+2 N 43, L NN
o [}
DM,
3;— =0 » i=N1+N2+1
Dh. M. tou,
1 _ in f 1.5 } .
—_— i h.- - ) s -
o (Jiulei)/Lj(yi)dt i=1
[+
Dh, z M. t M,
i i ds(t) in
Dt 2AZ 6(t) at [hi+1_hi—1]'(~¢_i) (hi-e;) /{ f % ndt'
[+]
i=2,3, N
Dhy
e -0 i=N;+1

'} »  i=Ny+l (45¢)

(45d)

(45e)

(46a)

(46b)

(46c)



Jr=s

De Dh h,—e; & i (z'-e )n -
i i cbi—ei g z'-ey
= —————— ’ = 47a
pt Dt [A(hi)] / G P } - (#r2)
n
[A(z")]
De; %y as(t) Dhy %i . ds(t)

Dt~ AT 8(0) at  Li+17®i-1] +n[Dt T AL 5(1) dt (bip1-hy-p) ]

1,
1 h n
hi~e; & / i (z'-e;) \
—_ az'h, i=2,3,...,N 47b
[A(z")]
Dei
TS o, i=N;+1 (47c)
In the above
1
Ly = (i=-1)AZ = — (i- i=
i ) C Nl (1 1) » 1-1.2.....N1

. 1
ni = (I—Nl_l)An = 'N—z— (i_Nl-l) » i=N1+13N1+2.ooo;Nl+N2+1

AC= » A'ﬂ='—

1
N1 N
and N],Nz designates, respectively, the number of spatial 1increment in
thinning zone and uniform zone, and.in is obtained by setting h=h1 is eqn.
(33b).

Note that eqn. (45e) corresponds to boundary condition (22b). Moreover,
Dh/Dt and De/Dt as given by egns. (46¢) and (47c) vanish at the junction

point, since at any instant we always have h=1 and e=eoat this point. The
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integrals appearing in the above set of equations were evaluated by use of the
Newton-Cotes formulas. We thereby obtained a 1large system of 3N]+N2+4
ordinary differential equations. A computer program was developed first to
solve eqn. (23) for e, and then to solve eqns. (37) for the Mi's using the
initial bending moment function (see Sec. 4.2) as the initial condition. We
then used these results along with h1=1, e1=eo, &§=0 as the initial conditions
to solve the system of QODE's, eqns. (44-47).

It is also useful to compute the deflection of the beam. This can be
accomplished by substituting the above bending moments Mi into the

nondimensinal form of the equation of equilibrium

2
aM
= -P + Kw

- 7
3 X

However, this approach leads to considerable numerical error due to the
presence of the derivative term in the above equation. An alternate and more
accurate approach is to develop differential equations in the deflection. The
same solution technique used for the bending moment is also applicable to
these differential equations in the deflection. For the sake of brevity, the
resulting equations will not be presented here (see [18]). An even larger
system of 4N]+2N2+5 ODE's 1is obtained in this case. A high accuracy yet
costly numerical algorithm, i.e. Gear's stiff ODE algorithm, was used to solve

this system.
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4.2 Solutions and Discussion

Our attention is first directed to a special case in which closed form
solutions exist. Thus, let us delete the elastic Winkler foundation and also
consider a beam with a uniform temperature distribution equal to Tu (a
dimensional quantity). Under such circumstances, the bending moment M remains
constant in time, and the neutral axis coincides with the centroidal axis
owing to the homogeneous nature of the material properties. Moreover, we have

the following values for the dimensionless quantities [see eqns. (32) and (33)]

e=%h

A(z) =1
1.

F=n

The dimensionless governing equations for h,e [see eqns. (29) and (31)] in the

thinning zone (0 <x<§(t)) follow for this special case as

-2n
dh b
.- . 1<t 48a)
ot t £ (
o]
de dh
=2 - , 48b
it 2 at 14t ( )
and that for &(t) becomes
as(e) ___M x=6(t) , 1<t (48c)
dt
L
n ox
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Note that these equations may be solved consecutively and that eqns. (48

a,b) include neither the x variable nor the 1input 1load function P(x,t)
explicitly. Physically, eqn. (48b) 1indicates that although 2eo=h°=1
initially, both quantities will be equal to zero at the instant the beam
collapses. After eliminating the integral via differentiation, eqn. (48a) may
be rewritten as

2 oh

— [Z= « 42027 _ 49

3t L3 " B ]=o0 (49)
This differential equation may be solved analytically with the {initial

conditions

and

. F at t

where tI=tI(x) designates the time required for a material point with
coordinates (x,1) to reach the critical state. The second initial condition

in the above was obtained by setting t=t_ and h=1 in eqn. (48a). The solution

I
to eqn. (49) is then obtained as

t 2 2n-1 1+2n

tp  1za X T 1aa c 0t . gt (50)

which is identical to the result derived in [8].
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?he solution to eqn. (48b) for e then follows directly from the solution
of eqn. (50) for h. Here tI(x) may be expressed in terms of the bending
moment M(x). Since the point (0,1) reaches the critical state at time t=1

while the point (x,1) ruptures at time t=tI(x), it follows from eqn. (25) that

M

tr(x) = (GO (51)

Here, Mo and M represent the bending moments at points with x-coordinates

equal to 0 and x, respectively. Equation (50) thus becomes

+2
(!Lo“t UL 2 1420 0<x<8(t) , 1<t (52)

M, 1-2n 1-2a '

Although differential equation (48a) in h does not explicitly involive the
variable x and the bending moment M, its solution (52) is seen to be directly
related to M.

The function tI(x) in egn. (51) may be inverted in the simple case that
the bending moment M(x) is monotonic in nature. In fact, for such a simple

case the constraint on the moving juntion

x = 5(t)
is invertible and is physically equivalent after inverstion to
t = tI(X)

Consequently, witht he use of eqn. (51), eqn. (48c) attains the alternate form

as mo+l
di” - - i x=5(t) , 1<t (53)

oM

n

g =
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Consider for the moment a very simple case in which a point-load is applied on

the beam at x=0. The bending moment for this load is simply given as

M= M (1-x) (54)

and differential equation (53) becomes

ds(t)
dt

=1 (-s(ey12t1, 1<t

With the initial condition § at t=1 equal to 0, the above equation yields the

solution

8(t) =1 - ¢ , 1<t (55)

B

Note that solution (55) 1is also obtainable from the solution (52) by setting
h=1 and using expression (54). The solutions of this special closed-form case
are now complete.

We thus turn our attention to the original problem, containing in general
both the Winkler term and a temperature gradient. A singularity appears in
eqn. (39a) at time t=1 when &=0, and this leads to numerical difficulties.
This obstacle may be circumvented by introducing an "imperfection" [33] in
eqn. (39a). Here, we follow the latter approach and introduce an imperfection
in & as

8(t) = 1.0x10~° at  t=1

Moreover, the temperature in the beam is assumed to be linearly distributed in

the z-direction in accordance with (see Fig. 1c)

T=T, + (Tb -TJ)z . 0<z<1
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where the dimensional surface and bottom temperatures are chosen respectively
as

= o] — [o]
T, = 300°% , Ty =360°%
Also, we use for the creep activation energy the dimensional value

AH = 0.112x10° T'mole™?

Note that because of the nondimensional form of our governing equations it was
not necessary to stipulate a specific material. Finally the number of

increments chosen in the present beam problem were

N

] 5 for the thinning zone

N

i

2 10 for the uniform zone
which yield a total of 29 0DE's, or 45 if the equations for deflection are
also included. In order to limit the complexity of this nonlinear problem,
only the uniformly applied load is considered here. In this case, the shape

function [see eqn. (20)]1 of the applied load is simply
f(x) =1, 0<x(1

The jnitial bending moment function M(x,0+) is obtainable from egns. (21) and

(22), and is given as

M(x,0%) = (x*-1)/2 (56)

which will be used as the initial condition for egns. (37).
The results we shall present may be separated into two groups, i.e. those

with the foundation present and those with the foundation absent. 1In the
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latter case of the foundation absent, we have from eqn. (35) B=0 since in this
case the spring constant for the foundation is identically zero. We consider
the B=0 case first, and note that here the bending moment is independent of
time, and is thus given simply by eqn. (56) after the 1lateral 1load is
applied. (For the B=0 case, we did not calculate the deflection of the
beam.) Figures 3 and 4 display the propagating rupture front for B=0 in the
second stage of damage for n=3 and 5, respectively. In these figures the
depth and axial coordinates z,x of the beam are given in nondimensional form.
The sequence of curves inside the beam trace the propagation of the rupture
front as time ellapses. The &(t) function at time t is given by the distance
along the bottom surface (z=1) from the point x=0 to the intersection of the
curve for time t with the bottom surface. Note that the beam of n=3 material
exhibits a wider thinning zone than does the beam of n=5 material. It would
appear that the rupture front of the n=5 beam propagates faster than that of
the n=3 beam. But you are reminded that this observation is made for a
nondimensional time scale and will not necessarily follow for dimensional
time. Each set of these curves for a parameter n required about 1 minute of
computer time (CPU).

We now turn to the general case with the Winkler foundation present. Tlhe
dimensionless parameter B ([see eqn. (35)] contains a group of constants
including the spring constant of the foundation, applied load, geometry and
material properties of the beam, and is considered arbitrary in the present
nondimensional study. Here we chose for illustration the value B=1 which
requires that the numerator and denominator 1in eqn. (35) be of the same

order. In addition to the bending moment M, we also computer the deflection w
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for this case. Due to the complicated nature of the governing large system of
ODE's, a considerable amount of computer time was required to complete one run
for a specific value of n. Thus we limited the computer time to 1000 seconds
(about 16.7 minutes) per run, and accordingly obtained a reasonable number of
solution curves for time steps in the early part of the second stage of
damage. The computations could have easily been extended up to the point of
final collapse of the beam, but for reasons of economy this was not done.
Figures 5a,b give respectively the nondimensional deflection of the beam
for values 3 and 5 for the stress power n. Since the chosen load is uniformly
distributed, these curves do not exhibit the characteristic "uplift" which
often occurs under centrally concentrated loads orkpoint loads on a beam with
a Winkler foundation [34, 35]. According to the flexural model presented in
[35], the deflections of a beam which experiences no damage approaches an
asymptotic 1imit as the time tends to infinity. Howrver, no asymptotic
deflection solution exists in the present problem, since damage causes the
beam to thin and accordingly the deflection is unbounded. This may readily be
seen in Fig. 5Sb, in which the increment of beam deflection 1is clearly
increasing in the final few time steps shown. Although we have used Norton's
steady creep law, egn. (16), to describe the creep behavior of the material,
the nature of the deflection shown in Fig. 5b is similar in form to the
typical creep curve with its three stages of creep. Such behavior coincides
with the recent experimental investigations [41, 42] in which a beam with a
deep notch was subjected to a uniform temperature and point load. This can be
explained by the fact that as the beam starts thinning the remaining material

carries the same load but with greater stress.
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In [35] where no damage was included, McMullen et al noted that the
bending moment relaxes after the load is applied and approaches zero as time
tends to infinity. Fiqures 6a,b exhibit this same relaxation of the bending
moment in the more general case where damage causes the beam to thin.
Furthermore, Fig. 6b shows that the relaxation of the bending moment
accelerates in the final few time steps shown; it is believed that Fig. 6a
would also do the same if the computer time had been extended. Since the
1ifetime of the beam is finite, the beam should collapse before the bending
moment vanishes. Figures 7a,b display the propagating rupture front for B=1
with n=3 and 5, respectively. As in the B=0 case, the rupture fronts in the
present case have sharper profiles in the n=5 beam than in the n=3 beam. And
the rupture front for the n=5 beam propagates faster than that for the n=3
beam relative to the nondimensional time scale. We also point out that the
numerical scheme for the system of O0DE's presented in the previous section is
stiffer for n=5 than that for n=3, since within the chosen limit of compute
time (100 seconds) the final time step reached was t=1.90 for the case of n=3
and only t=1.60 for the case of n=5.

It should be noted that the results displayed may contain some numerical
error in the later time intervals, since we are restricted by the limitations
of infinitesimal strain and small rotations. Although we have formulated the
problem in an idealized manner, a significant amount of mathematical
difficulty was still encountered. If one attemps to relax some of the
assumptions imposed, the complexity of the problem could increase greatly and

possibly preclude a successful numerical analysis.
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Fig. 1a Beam on high temperature foundation, subjected to lateral
load P(x,t).
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Fig. 1b Beam with simple end supports, elastic Winkler foundation,
and symmetric load.
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Fig. 3 Propagation of rupture front in a beam with no Winkler
foundation — (a) B=0 and n=3, (b) B=0 and n=5.
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Fig 3. (continued)
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Fig. 4 Nondimensional deflection of a beam resting on Winkler
foundation — (a) B=1, n=3, T, =360k and T, =300, (b) B=1,
n=5, T, =360° and T, =300°k.
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Fig. 5 Nondimensional bending moment along a beam on Winkler
foundation — (a) B=1.0, n=3, T,,=360°% and T, =300°k, (b)
B=1.0, n=5, T, =360%% and T,=300°.
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A Constitutive Model With Damage for
High Temperature Superalloys#*

J.A. Sherwood and D.C. Stouffer
Department of Aerospace Engineering
and Engineering Mechanics
University of Cincinnati
Cincinnati, Ohio 45221

I. Introduction

The goal of the research is to develop a unified constitutive model
that is applicable for high temperature superalloys used in modern gas
turbines. The formulation will be considered successful if: (1) the
resulting formulation is efficient for numerically intensive computation
such as found in nonlinear finite element models, (2) there is a direct
correspondence between the material parameters and experimental data, and
(3) the resulting formulations are reasonably accurate for a variety of
loading conditions.

Two unified inelastic state variable constitutive models have been
evaluated for use with the damage parameter proposed by Kachanov [1]. The
first is the model of Bodner and Partom [2,3] in which hardening is modeled
through the use of a single state variable that is similar to drag stress.
The other constitutive model is an extension of the Bodner-Partom flow
proposed by Ramaswamy [4] that employs both a drag stress and back stress.
This extension has been successful for predicting the tensile, creep,

fatigue, torsional and nonproportional response of Rene' 80 at several

* This research was supported, in part, by the National Aeronautics and
Space Administration Lewis Research Center and the Air Force Wright
Aercnautical Laboratory at Wright Patterson Air Force Base by grant

NAG-3-511 to the University of Cincinnati.
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temperatures. In both formulations a cumulative damage parameter is
introduced to model the changes in material properties due to the formation
of microcracks and microvoids that ultimately produce a macroscopic crack.

Calculations have shown that the drag stress/damage model is reasonable for
predicting the tensile and creep responses of IN100 at 13500F and Rene' 95

at 1200°F, but the model is not entirely satisfactory for predicting the
cyclic response of these materials. In this study a back stress/drag
stress/damage model has been evaluated for Rene' 95 at 1200°F and is shown
to predict the tensile, creep, and cyclic loading responses reasonably well.

II. Drag Stress/Damage Model

The initial phase of this research is based on a constitutive model
using only one hardening variable, Z, to simulate the drag stress of the
material and a damage variable, w, to model the changes in the material
properties due the formation of microcracks and microvoids. The inelastic

flow equation of Bodner was used in the following form

S
R 2 - 2 Py
&1, = Do exp(- LEzelLny (1)
2 /E
where SiJ is the deviatoric stress tensor and J, = Sij Sij’ The value of n

controls strain rate sensitivity and D, is the limiting strain rate. The

evolution equations for the state variables Z and w were developed using
the Hemholtz free energy as potential function similar to the work in [T7].
The results show that the flow law and evolution equations are
thermodynamically associated and are not free to be derived independently.
The damage parameter, as proposed by Kachanov, was defined to exist on
the interval [0,1]. A value of zero represents no damage and a value of one

for w denotes complete failure. Calculations for Rene' 95 and IN100
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indicated that a.value for the damage state variable of much less than one
corresponds to failure.

The values of the material constants and initial value of the state
variables were determined from experimental data that was obtained in a
previous study. The experimental work was conducted by the Air Force Wright
Aeronautical Laboratory, WPAFB, Ohio and Mars-Test Inc., Cincinnati, Ohio

[5,6]. The correlation of the constitutive model to experimental
observations of monotonic tensile and creep tests on IN100 at 1350°F and

Rene' 95 at 1200°F was very good. The calculated response for IN100 is
shown in Figures 1 and 2.

Extending the drag stress/damage model to predict fatigue loop
responses was not completely successful. The model appeared to have trouble
capturing the shape of the fatigue loop. This shortcoming is possibly due
to how the state variable Z quantifies dislocation movements for a
particular type of loading. Drag stress is metallurgically associated with
the retardation of dislocation movement due to the interaction with
precipitates which results in dislocation jogs or looping for example. Back
stress is associated with the pile-up of dislocations at a barrier, such as
a grain boundary, which cannot be overcome. During cyclic loading the back
stress oscillates with the applied load while the drag stress either
increases monotonically or remains essentially constant. Since the
dislocation movement was only in one direction for the tensile and creep
tests, the contributions of the drag stress and back stress to the total
resistance of dislocation motion could be simulated by one state variable
monotonically increasing to a steady state value. Although this lumping of
resistances to dislocation motion worked well for monotonic loadings, it

appears inadequate for cyclic loadings.
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III. Drag Stress/Back Stress/Damage Model

Based on the metallurgical considerations given above and the success
of the drag stress/back stress model proposed by Ramaswamy for predicting
the fatigue response of Rene' 80, a drag stress/back stress/damage model is
proposed. The drag stress scalar Z simulates long term cyclic hardening

while the back stress tensor Qij models the short term strain or work

hardening. The governing equations are:
Inelastic Flow Equation,

(sij-n )

. 209,12 ;

€5y D, exp - [(Z (;Kw) )" 1] (2)
2 /K_z-

Back Stress Evolution Equation,

&, = et + £, ]el 0. sa, + £,0 (3)

ij 1713 11317137 Vs 3713

Drag Stress Evolution Equation,

7 - m(zZ,-2)W (4)

Damage Evolution Equation,

. oIT
W = 8284 (5)

and

Back Stress Relaxation Equation

° vJ,.r
= -B(¥<2 -
g B( oo) (QS Qsat) (6)
where K, = (Sij—nij)(sij-nij). In the back stress evolution equation f, and

f, are material constants. In the drag stress evolution equation the value

of m controls the hardening rate, Z, is the saturated value of 2, and ﬁI is
the inelastic work rate. The parameter g, in the damage evolution equation

is a material function and damage growth is assumed to be proportional to
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the maximum principal tensile inelastic strain rate é;gx; Initially damage

is assumed to be absent in the material before loading. 1In the back stress

relaxation equation ns is the steady state value of the back stress, Qsat is

the maximum saturated value of the back stress observed in uniaxial tensile
tests, the constant o, is introduced to nondimensionalize stress, and B and

r are material constants to control the time dependence. The proposed model

reduces to that of Ramaswamy for w=uw=0.

In uniaxial 1oading‘Rene' 95 response displays tension-compression
asymmetry as shown in Figure 5. At constant strain rate the compressive
tests saturate at a higher magnitude of stress than do the tensile tests.
The experimental fatigue response as given in Figure 9 for example shows
that for the same level of stress the tensile strain is less than the
compressive strain. It is also shown in [5] that the minimum creep rates
observed in compression are much less than those in tension at corresponding
values of stress. These pieces of information are used to substantiate that
a higher initial value of hardness for the material in compression than in

tension. For the uniaxial exercise this asymmetry was included in the model

by having two drag stress state variables, Z+ and Z similar to kinematic
hardening components. The corresponding evolution equations are:
Tensile Drag Stress Evolution Equation,

AN UM o (7)

and

Compressive Drag Stress Evolution Equation,

77 - m(z7-z )Wk, (8)
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When the stress is greater than zero Z=Z+ and when the stress is less than
zero Z=2 . The i+ evolution equation was only active for stresses greater

than zero and the Z equation was only active for stresses less than zero.

IV. Evaluation of Material Parameters

The values of D,, n, Qmax' ZT and Z: were found using a nonlinear

regression analysis of the inelastic strain rates corresponding to saturated

stress levels observed in the tensile tests. The values of the material

constants f,, f,, m+and m were determined using an iterative computer
program with the tensile, creep, and cyclic test data as inputs. The

program iterated until it converged on stable values for these material

constants., For Rene'95 at 1200°F the values of ZT and Z: are equal.

The damage function, g,, was determined as the final step after all
other constants had been found. The damage growth was evaluated from the
tertiary creep response for small values of accumulated inelastic strain and
the long term fatigue response corresponding to large values of accumulated
inelastic strain. Using both the creep and cyclic tests the values of g,,
relating damage to the accumulated inelastic strain, were found as shown in
Figure 3. This damage curve demonstrates that the greatest damage growth
occurs early in the loading of the specimen and the rate of damage
accumulation approaches a steady-state value rather rapidly.

The maximum value of the back stress is observed in the short time
tensile tests when the stress saturates. During long time loading such as
creep, the maximum value of the back stress has a lower value than that in
the short time tests. This lower value was seen by Ramaswamy [U4] for Rene!'

80 at 1U400°F and 1600°F. This reduced back stress value is also present in
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Rene' 95 at 1200°F. Figure 4 shows how the maximum back stress QS decreases

from the maximum value Qsa as a function of the applied stress. Without

t
test data to for substantiation a lower bound has been artificially imposed.
The value of g, was arbitrarily chosen as 200 Ksi to nondimensionalize
stress. Since the time required for a given creep test to reach a stable
back stress can be observed, the values of B and r were determined by a
linear regression of the back stress relaxation equation and the test data.

V. Comparisons of Experimental and Calculated Results

The strain rate control test data for Specimens 1-1 and 6-1 in Figure 6
show that the saturation stress for Rene' 95 is essentially strain rate
independent. The model predictions show a small amount of strain rate
dependence; however the predictions are reasonable for both the stress rate
controlled and strain rate controlled tests.

The comparison of the observed and predicted creep response is shown in
Figure 7. The creep stresses range from 146 Ksi to 175 Ksi. The
experimental data is ordered except for the 146 Ksi test. The model
predicts reasonably well the primary, secondary, and tertiary creep
responses for all of the tests except the 146 Ksi test. The slight dip in
the predicted creep response connecting the secondary and tertiary creep
regions is a consequence of matching the constants in the back stress
relaxation equation with the damage growth equation. However, once the back
stress is stabilized the model predictions are parallel to the experimental
creep responses.

A typical stress control cyclic test is shown in Figures 8 and 9. The
predicted and experimental peak strains as a function of time are shown in
Figure 9. The experimental tensile peak strain is observed to remain

relatively constant while the compressive peak strain decreases with each
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additional loop until a steady state response {s reached. The observed

error in the model prediction is due to a combination of factors. However

since test 5-3, Ref. [5], is for a stress range of + 168 Ksi the deformation

{3 well into the plastic range. It can be seen from the tensile tests in

Figure 6 that a small deviation in the peak stress produces a large

variation in the predicted tensile peak strain. Since the trends are

clearly correct the predicted tensile strain is considered acceptable.

Figure 8 shows how the shape of the fatigue loop changes with increasing

cycles. A displacement limit of 0.02 in/in was defined as failure since the

model does not include a criteria for the transition from damage
accumulation to crack growth. The model has been used to predict the
fatigue life up to cracking for two stress control tests 5-3 and 3-6 of Ref.

[5] at +168 Ksi and +158 Ksi, respectively. 1In these calculations the

damage growth appears to be reasonably accurate. Additional fatigue

calculations will be made in the future to further evaluate the model.

Finally, future work to use the model to predict the material deformation to

combined creep and cyclic loadings is planned.

VI. References

1. Kachanov, L.M., "Time to Fracture Under Conditions of Creep," Meknanika
i Mashinostr. No. 8, [in Russian], pp. 26-31, 1958,

2. Bodner, S.R. and Partom, Y., "Constitutive Equations for Elastic-
Viscoplastic Strain-Hardening Materials," ASME Journal of Applied
Mechanics, Vol. 42, pp 385-389, 1975.

3. Bodner, S.R., Partom, I., and Partom, Y., "Uniaxial Cyclic Loading of
Elastic-Viscoplastic Materials," ASME Journal of Applied Mechanics,

Vol. 46, pp 805-810, 1979.

194



Ramaswamy, V.G., "A Constitutive Model for the Inelastic Multiaxial
Response of Nickel Base Superalloy Rene' 80," Ph.D. Dissertation,
University of Cincinnati, 1985.

Stouffer, D.C., Papernik, L. and Bernstein, H., "On the High
Temperature Response of a Super Alloy; Part 1: The Mechanical
Properties of Rene' 95," AFWAL-TR-80-4163, 1980.

Stouffer, D.C., "A Representation for the Mechanical Response of IN100
at Elevated Temperature," AFWAL-TR-81-4083, 1981.

Abuelfoutouh, N.M., "A Thermodynamically Consistent Constitutive

Model for Inelastic Flow of Materials," Ph.D Dissertation, University

of Cincinnati, 1983.

195



200

3 =
— . . - L ] o L] o 0 o o
f Rt
ANt b el e e el b
0
4 o .
" o - +
v 1
wn -
¥l
m +
—
m »
*
3 :

EXPERIMENT MOODEL STRAIN RATE
. 0.05 IN/IN/MIN

o s ——— 0.0004 IN/IN/MIN
o ... 0.0033 IN/IN/MIN
° T T
0.000 0.005 0.010 0.015
STRAIN, IN/IN

Figure 1. Predicted and Experimental Tensile Response of IN100 at 1350°F

un
o
o EXPERIMENT MODEL  CREEP STRESS
. 91 KXSI| °
. _— 90 KSi
L I 120 KSI
<+ x —_— 127.3 KS!
O_ - ° /- -
o
/e
'f)
o
Z o
N
Z
rd
g 8
x o
w
o
o
8
S T T T T
0 200 400 600 800 1000
TIME, MIN

Figure 2. Predicted and Experimental Creep Response of IN100 at 1350°F

196



0.3

DAMAGE
0.2

0.1

1 i 1 I
0.0 0.2 0.4 0.6 0.8 1.0

0.0

ACCUMULATED INELASTIC STRAIN, IN/IN

Figure 3. Damage as a Function of Accumulated Inelastic Tensile Strain for

Rene' 95 at 1200°F

120
|

100
1
\

BACK STRESS, KSi
90
1.
\\

70
1

60

T 1 1 1
100 120 140 160 180 200

CREEP STRESS, KSI
Figure 4. Variation of Saturated Back Stress with Applied Stress for

Rene' 95 at 1200°F

197



o
o
~N
(=]
n
0
X
s O
0w o
W
=
w
o
0
—— =1 5E~1 IN/IN/MIN :
—— -2 ~SE-1 IN/IN/WIN |}
----- 1-3 5E=4 IN/IN/MIN ~,
——— 14 =5E-4 IN/IN/MIN Jj
(=]
T ] 1
0.000 0.005 0.010 0.015 0.020
STRAIN, IN/IN

Figure 5. Comparison of Experimental Tensile and Compressive Responses of

Rene' 95 at 1200°F

(o]
[=]
N
o
0 —
7]
x
- o .
g 8-
w
=
(7]
o _
w
EXPERIMENT MODEL LOADING RATE
- 5-5 6000 KSI/MIN
. —— 2-2 60 KSI/MIN
o e 1=-1 0.50 IN/IN/MIN
x ~ — = =1 0.05 IN/IN/MIN
© T T T T
0.000 0.005 0.010 0.015 0.020

STRAIN, IN/IN

Figure 6. Predicted and Experimental Tensile Response of Rene' 95 at 1200°F

198



Figure 7.

Figure 8.

0.02 0.03 0.04

STRAIN, IN/IN

0.01

0.00

0 100 200 300 400 500

TIME, MIN

Predicted and Experimental Creep Response of Rene' 95 at 1200°F

100
|

STRESS, KsSt

-100

-200

-0.010 -0.005 0.000 0.005 0.010 0.015

STRAIN, IN/N
Variation of Fatigue Loop for Specimen No. 5-3 Loaded at +168 Ksi

at 10 Cycles per Second for Rene' 95 at 1200°F

199



[Te]
o
o
o
S -
o L W B
n
Z O
IS
Z o
z
e 3
- O -
“ s
8
o
°| J YA ERENENNNNERNNNNENENNNNENNNNNNN
o MODEL PREDICTION
-o- ] EXPERIMENTAL DATA
o ] ] |
) 50 100 150 200

TIME, SECONDS

Figure 9. Predicted and Experimental Strains for Specimen No. 5-3 Loaded at

168 Ksi at 10 Cycles per Second for Rene' 95 at 1200°F

200



N88-21511

EVALUATION OF STRUCTURAL ANALYSIS METHODS FOR LIFE PREDICTION

A. Kaufman,* J.F. Saltsman, G.R. Halford, and M. Tong*
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

INTRODUCTION

Hot section components of gas turbine engines are subject to severe
thermomechanical loads during each mission cycle. Inelastic deformation can
be induced in localized regions leading to eventual fatigue cracking. Assess-
ment of durability requires reasonably accurate calculation of the structural
response at the critical location for crack initiation.

Nonlinear finite-element computer codes, such as MARC (ref. 1), have
become available for calculating inelastic structural response under cyclic

The plasticity computations in these codes have been based on classi-

cal incremental theory using a hardening model to define the cyclic yield
surface, a yield criterion, and a flow rule. Generally the von Mises yield
criterion and the normality flow rule are used. Creep analyses are based on a
separate creep constitutive model that is not directly coupled to the plastic-
ity model. However, analytical studies of hot section components such as tur-
bine blades (ref. 2) and combustor liners (ref. 3) have demonstrated that
existing nonlinear finite-element computer codes based on classical methods do
not always predict the cyclic response of the structure accurately because of
the lack of interaction between the plasticity and creep deformation response.

Under the HOST Program, the NASA Lewis Research Center has been sponsoring
the development of unified constitutive material models and their implementa-
tion in nonlinear finite-element computer codes for the structural analysis of
hot section components (refs. 4 to 7). The unified constitutive theories are
designed to encompass all time-dependent and time-independent aspects of
inelasticity including plasticity, creep, stress relaxation, and creep

recovery.

These theories avoid the noninteractive summation of inelastic

strain into plastic and creep components and most of them avoid specifying
yield surfaces to partition stress space into elastic and elastic-plastic

In discarding these overly simplified assumptions of classical

theory, unified models can more realistically represent the behavior of
materials under cyclic loading conditions and high temperature environments.

A major problem with nonlinear, finite-element computer codes is that they
are generally too costly to use in the early design stages for hot section com-
ponents of aircraft gas turbine engines. A program has been underway at NASA
Lewis to develop a simplified and more economical procedure for performing non-
linear structural analysis using only an elastic finite-element solution or
local strain measurements as input (refs. 8 and 9). Development of the simpli-
fied method was based on the assumption that the inelastic regions in the
structure are local and that the total strain history can be defined by elastic

analyses.

Corrections have been incorporated in the method to account for

*Sverdrup Technology, Inc., Lewis Research Center Group.
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strain redistribution under applied mechanical loading. This procedure was
implemented in a computer program and has been exercised on a wide variety of
problems including multiaxial loading, nonisothermal conditions, various mate-
rials and constitutive models, and dwell times at various points in the cycles.
Comparisons of the results of the simplified analyses with nonlinear finite-
element solutions for these problems have shown reasonably good agreement.

More than 30 methods for predicting low-cycle fatigue l1ife have been iden-
tified in a recent review article by Halford (ref. 10). These methods differ
somewhat in the structural analysis parameters used for life prediction. Basic
structural response information required by various life prediction methods
includes the total and inelastic strain ranges, inelastic strain rate, propor-
tion of time-dependent and time-independent inelastic deformation, peak tensile
and mean stresses, stress range, and cycle frequency.

The purpose of this study was to evaluate several nonlinear structural
analysis methods (of different levels of sophistication) with regard to their
effect on the 1ife prediction of a hot section component. The methods selected
for evaluation were nonlinear finite-element analyses based on both classical
and unified theories, as well as the simplified nonlinear procedure.

The component under consideration was the airfoil of an air-cooled turbine
blade being studied for use in the first-stage, high pressure turbine of a com-
mercial aircraft engine. A mission cycle typical of a transatlantic flight was
assumed for the analyses. Initially, this airfoil and mission were used for a
demonstration problem involving a Walker unified model by Pratt & Whitney (P&W)
(ref. 7) under contract to NASA as part of the HOST Program.

MARC nonlinear finite-element analyses were conducted for this airfoil
problem at NASA Lewis to calculate the stress-strain hysteresis loop at the
critical location for life prediction purposes. The classical type of analysis
used conventional creep-plasticity models, whereas the unified analyses were
based on two quite different constitutive theories, those of Bodner and Walker
(ref. 6). The simplified procedure was also applied to this problem using
elastic finite-element solutions for three peak temperature points of the
cycle. Comparisons were made of calculated fatigue lives based on these struc-
tural analysis results by using the total strain version of the strain range
partitioning (TS-SRP) life prediction method (ref. 11).

PROBLEM DESCRIPTION

The turbine blade under study is a Pratt & Whitney (P&W) generic design
for use in the high-pressure-stage turbine of a commercial aircraft engine.
The airfoil span measures about 6 cm; the chord width, 2.5 cm; and the tip-to-
hub radius ratio is 1:15. Material properties and model constants for a cast
nickel-base superalloy, B1900+Hf (ref. 6), were used for the analyses.

The three-dimensional finite-element model created by P&W for the MARC
analyses of the turbine blade airfoil is shown in figure 1. A total of 173
solid elements with 418 nodes and 1086 unsuppressed degrees of freedom was used
to model the airfoil shell. This model included twenty-four 20-node elements
around the expected high strain region of the leading edge and 149 8-node ele-
ments for the remainder of the airfoil. Displacements were tied at the
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interfaces of the two types of elements to prevent separation around midside
nodes. Boundary conditions were applied to constrain all nodes at the base of
the model to lie on the base plane of the airfoil. Additional boundary condi-
tions were applied to prevent rigid body motion.

Figure 2 illustrates the flight mission originally selected by P&KW and
subsequently used for these analyses. This type of cycle is representative of
a transatlantic flight for an advanced commercial aircraft engine. High, tran-
sient, thermal stresses and inelastic strains are induced during the engine
takeoff, climb, and descent parts of the cycle. Creep occurs during the maxi-
mum takeoff, climb, and cruise steady-state hold times. On shutdown at the end
of each cycle, a uniform airfoil temperature of 429 °C and a rotational speed
of 200 rpm were assumed.

ANALYTICAL PROCEDURE
Finite-Element Analyses

Metal temperatures were calculated from MARC transient and steady-state
three-dimensional heat transfer analyses. The input for these heat transfer
analyses are proprietary P&W information. The calculated metal-temperature,
cycle-time profiles for the midspan leading edge, trailing edge, and cold spot
locations are shown in figure 3. Figure 4 shows the temperature distribution
at the maximum takeoff condition when the highest temperatures occurred.

The MARC code was also used to perform elastic and nonlin.ar structural
analyses for the airfoil. The mission cycle was subdivided into 81 load-time
increments. Structural analyses were carried out for two corilete flight
cycles. Plasticity calculations were performed for the transient parts of the
cycle and creep calculations during the steady-state maximum takeoff, maximum
climb, and cruise hold times. The classical creep-plasticity analyses used
temperature-dependent cyclic stress-strain and creep properties for B1900+Hf
alloy. Plasticity calculations were based on a Kinematic hardening rule and
the von Mises yield criterion; creep was determined from a power law model in
conjunction with a time hardening rule.

MARC finite-element analyses were also performed with the unified models
of Bodner and Walker. The Walker model is of the common back-stress, drag-
stress form; where the back stress is a tensor internal variable defining the
directional hardening (Bauschinger effect), and the drag stress is a scalar
internal variable defining the isotropic hardening. Of the many unified models
which have been proposed in the literature, the Walker model has undergone the
most development for finite-element analysis. All 14 material constants of
this model are temperature-dependent..

The major exception to the back-stress, drag-stress form is the Bodner
model. This model has one internal variable which is partitioned into direc-
tional and isotropic hardening components. Since it lacks a back stress, it
assumes that the inelastic strain rate vector is coincident with the direction
of the deviatoric stress. Another difference between the Bodner model and the
more common back-stress, drag-stress model is that the former uses the plastic
work rate as the measure of hardening whereas the latter uses the magnitude of
the inelastic strain rate. There are essentially nine material constants to
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be determined for this model, only three of which have been found to be
temperature-dependent for most materials studied.

Under a NASA sponsored effort with Southwest Research Institute and
Pratt & Whitney Aircraft, the unified constitutive theories of Bodner and
Walker were evaluated and further developed to model the high-temperature
cyclic behavior of B1900+Hf alloy. A detailed discussion of these unified con-
stitutive models, as well as the material constants for both models, are pre-
sented in the contractor annual status reports (refs. 6 and 7). The models
were implemented into the MARC code through a user subroutine, HYPELA. The
model constitutive equations were integrated using an explicit Euler technique
and a self-adaptive solution scheme.

Simplified Analysis

The basic assumption of the simplified procedure is that the inelastic
region is localized and, therefore, the material cyclic response can be approx-
imated using as input the total strain history obtained from elastic analyses.
One version of the procedure uses Neuber corrections to account for strain
redistribution due to mechanical loading; however, this version was not util-
ized for this study because of the dominance of the thermal loading during the
peak strain parts of the cycle. Classical incremental plasticity methods are
used; the material is characterized by a von Mises yield criterion, to describe
yielding under multiaxial stress states, and a bilinear kinematic hardening
model, to describe the motion of the yield surface under cycling.

Only elastic solutions for peak strain points in the cycle are normally
required to create the strain history input; these are linearly subdivided
into a sufficient number of increments to define the stress-strain cycle. The
strain states calculated from the elastic finite-element analyses are corre-
lated in the form of von Mises effective strains. To compute cyclic hysteresis
loops for life prediction purposes, the input effective strains must be given
signs, usually on the basis of the signs of the dominant principal stresses and
strains. In this case, elastic finite-element analyses were performed for the
startup, maximum takeoff, and shutdown conditions in order to create the input
strain history at the critical location.

The increments are analyzed sequentially to obtain the cumulative plastic
strains and to track the yield surface. Creep computations are performed for
increments involving dwell times by using the creep characteristics incorpo-
rated in the code. Depending on the nature of the problem, the creep effects
are determined on the basis of one of three options: (1) stress relaxation at
constant strain, (2) cumulative creep at constant stress, or (3) a combination
of stress relaxation and creep.

A FORTRAN IV computer program (ANSYMP) was created to automatically imple-
ment the simplified analytical procedure. Previous papers (refs. 8 and 9) on
the development of this procedure present a detailed description of the calcu-
lational scheme.
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DISCUSSION OF RESULTS

The entire discussion of the structural and 1ife analyses results for the
airfoil presented herein are based on the critical location at the leading edge
at midspan, which was the hot spot as indicated in figure 4. This location
contained the element and Gaussian integration point which exhibited the larg-
est total strain change during a mission cycle.

The calculated stress-strain hysteresis loops at the critical location
for the first two mission cycles are shown in figures 5 to 7 for MARC finite-
element analyses (using the classical creep-plasticity, Bodner, and Walker
models, respectively), and in figure 8 for the simplified analysis. Figures 5
to 7 are plotted in terms of von Misses effective stress and strain with a
sign criterion based on the sign of the dominant normal stress. Comparison of
figures 5 to 7 shows that the maximum compressive strain, which occurs at the
hot end of the cycle, was about the same for the classical and unified model
finite-element analyses on the first cycle. This result is to be expected
since the problem was largely thermally driven, and it indicates that the ther-
mal strain calculations were consistent among these three analyses from startup
at room temperature to maximum takeoff. However, the stress-strain loops on
subsequent cycling were substantfally different among the models, especially in
regard to the peak strains during the cold part of the cycle in descending to
shutdown. These differences result in a smaller cyclic strain range for the
unified analyses than for the classical creep-plasticity analysis. The calcu-
lated stress-strain loops shown in figure 6 for the Bodner model are question-
able because of computational instabilities that were encountered in the analy-
sis on the cooldown part of the cycle. These instabilities are apparently due
to a discontinuity in the isotropic hardening term of the model's internal var-
fable when the stress sign changes during a steady-state hold time; it is
believed that this problem can be circumvented by refinements to the numerical
procedure for integrating the constitutive equations. The maximum compressive
strain for the simplified analysis (shown in fig. 8) was somewhat smaller than
for the finite-element analyses because the maximum compressive strain did not
quite occur at maximum takeoff. Therefore, the selection of the maximum take-
off condition as one of the mission points for a finite-element analysis
resutted in a slight truncation in the calculated peak strain and strain
range. In all the analytical cases, except with the Bodner model, the stress-
strain response had essentially stabilized by the end of the second cycle.

The results from these structural analyses (elastic-plastic-creep, Bodner
unified, Walker unified, and simplified) are summarized in table I in terms of
the total strain range and mean stress for the second cycle. CPU (central pro-
cessor unit) times for two complete analytical cycles are indicated in the
first column. The CPU time for the simplified analysis, including 81 sec to
perform the elastic finite-element analyses for the startup, maximum takeoff,
and shutdown conditions, and 1 sec for the actual simplified procedure, was 50
times faster than for the MARC classical finite-element analysis. The MARC
analysis using the Walker model was somewhat more economical in CPU time than
with the creep-plasticity models. Because of the computational problems that
were encountered with the Bodner model, it used somewhat more CPU time than the
classical models.

Also presented in table 1 are predicted cyclic lives to crack initiation
using the TS-SRP method. These predictions were based on unpublished NASA data
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for out-of-phase bithermal behavior of B1900+Hf alloy at maximum and minimum
temperatures of 871 and 483 °C, respectively. Comparisons of the calculated
strain ranges and lives (shown in table I) for the different structural analy-
sis methods demonstrate the sensitivity of 1ife prediction to the constitutive
models and analytical methodologies employed. In the present case, the lowest
cyclic life prediction was obtained using the classical nonlinear finite-
element analysis, and the largest using the Walker unified model. The simpli-
fied procedure probably would have given the most conservative 1ife prediction
if the maximum compressive strain used for the input total strain history had
been more accurately defined.

SUMMARY OF RESULTS

This paper evaluates the utility of advanced constitutive models and
structural analysis methods in predicting the cyclic life of an air-cooled tur-
bine blade for a gas turbine aircraft engine. Structural analysis methods of
various levels of sophistication were exercised to obtain the cyclic stress-
strain response at the critical airfoil location. Calculated strain ranges and
mean stresses from the stress-strain cycles were used to predict crack initia-
tion lives by using the TS-SRP life prediction method. The major results of
this study were as follows:

1. The predicted strain range and 1ife varied with the constitutive model
used. Differences in the calculated strain ranges between the unified and
classical models were mainly due to differences in the peak strains computed
at the cold end of the cycle. However, the maximum compressive strain on the
first cycle was not significantly affected by the constitutive model, thereby
indicating that the thermal expansion calculations were consistent.

2. The stress-strain responses calculated by using the Bodner and Walker
unified models were very similar. Computational instabilities encountered with
the Bodner model during the steady-state hold times probably can be circum-
vented by refinements in the numerical integration procedure.

3. Because of the differences in the calculated strain ranges, the lowest
predicted cyclic life resulted from using the classical nonlinear finite-
element analysis and the highest one from using the Walker unified model. The
simplified procedure probably would have given the most conservative life pre-
diction if the input total strain peak at the hot end of the cycle had been
more accurately defined.

4. The simplified procedure, including the computing times for the initial
elastic finite-element analyses, was about 50 times faster than the cyclic
finite-element analyses, and about 4000 times faster for just the cyclic
inelastic computations. The CPU time for the MARC finite-element analyses was
somewhat less for the Walker unified model than the classical creep-plasticity
models. Because of its computational problems, the Bodner model analysis used
the most CPU time.
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DATA REQUIREMENTS TO MODEL CREEP
IN 9CR-1MO-V STEEL *

R. W. Swindeman
Metals and Ceramics Division

Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831

Models for creep behavior are helpful in predicting response of components
experiencing stress redistributions due to cyclic loads, and often the
analyst would like information that correlates strain rate with history
assuming simple hardening rules such as those based on time or strain. On
the other hand, much progress has been made in the development of unified
constitutive equations that include both hardening and softening through the
introduction of state variables whose evolutions are history dependent.
Although it is difficult to estimate specific data requirements for general
application, there are several simple measurements that can be made in the
course of creep testing and results reported in data bases. The issue is
whether or not such data could be helpful in developing unified equations,
and, if so, how should such data be reported. Data produced on a

martensitic 9Cr-1Mo-V-Nb steel were examined with these issues in mind.

*Research sponsored by the U. S. Department of Energy, AR&TD Fossil
Energy Materials Program under contract no. DE-ACO5-840R21400 with Martin

Marietta Energy Systems, Inc.
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Approximately 40 creep tests were performed on the steel in the temperature
range 475 to 650 C and for times to beyond 10,000 h, The initial creep
rate, time to 0,2% creep strain, and minimum creep rate data were taken and
used to examine two types of creep models, In the first model, strain
hardening was assumed and the 0.27 creep data used to estimate the
parameters for a simple Norton-Bailey power law creep equation. In the
second model, the initial and minimum creep rate data were used to estimate
the evolution of a kinematic state variable that reduces the effective
stress included in a simple power law creep equation. 1In addition to the
above data, more than 100 creep rate data from stress and temperature change
tests were obtained and examined in connection with the expectations of the

two deformation models.

An example of the creep response to changing stresses in a test lasting
13,000 h is shown in Fig. 1. Here the stresses ranged from 0 to 241 MPa at
500 C, and creep response included both softening and hardening features.
Analysis of these and other data are shown in Fig. 2 which compares the
creep rates from constant and variable stress-temperature conditions with
the rates calculated from a simple strain hardening rule and creep law.

Data and calculations agree within reasonable bounds, although there is some
tendency for the rates to be greater than expected. These comparisons do
not include results from short-time transients. In such situations the
strain hardening model was found to underestimate creep rates for stress

increases and overestimate creep rates for stress decreases.

In the unified equation, the creep rate was assumed to be proportional to
the function (S—Ol)n , where ® may be a kinematic state variable (called the
"back stress"), as many other investigators have postulated. The choice of
4 for the stress exponent is quite common in the literature, and the
proportionality factor may be written as A(T)/D, where A(T) is some function

of temperature and D is either constant or slowly changing as a result of
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the metallurgical aging produced by time-temperature~strain exposure.
Assuming that ® is initially O and that D does not change permits the use of
the initial creep rate data to calculate X for any condition where the
instantaneous creep rate is known. Fig. 3 shows a comparison of the
calculated & against the applied stress for the minimum creep rate
condition. The calculated values are proportional to stress at low stresses
but approach a maximum that depends on the testing temperature.

Calculations of the hardening and recovery parameters in the Orowan-Bailey
growth law for ® requires more data, however. Here the rate of change in &
is given by the difference He-RX, where H is a hardening term, & is creep
rate, and R is the recovery term. Examples of H and R obtained from the

creep tests are shown in Figs. 4 and 5.

Stress change data at various stages of creep are needed to determine
whether or not it is necessary to evaluate changes in D. If the X
calculated from the initial creep rate and the minimum creep rate does not
agree with the & determined from a recovery creep experiment, then either
the model is totally wrong or D is changing. The latter situation seems to
be the case for the 9Cr-1Mo-V-Nb steel. Either way, the data base needed to
fully develop unified equations from creep tests is fairly substantial. Tt
may be easier to least squares fit entire data sets together rather than to
correlate parameters from individual tests and restructure a model from the

these elements.
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Fig. 1. Creep response of 9Cr-1Mo-V-Nb steel during stress changes at 550 C.
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CONTROLLED-STKAIN RATE TESTS AT VERY LOW STRAIN RATES
OF 2618 ALUMINUM AT 200°C

J.L. Ding, S.R. lee
Department of Mechanical Engineering

Washington State University
Pullman, Washington  99164-2920

Constant strain rate tests and constant locad creep tests were performed
on 2618 alumiQﬁy at_}PO°C._8The stra}g rates used in the constant strain rate
tests were 10 ~, 10 °, 10 ~, and 10 “/sec. Due to the fact that the strain
rates in both tests were comparable to each other, the similarities between
them can therefore be studied.

It was concluded that metals are essentially rate sensitive at elevsted
temperatures., The traditional definition of creep and plasticity used in the
classical creep analysis is actually a reflection of the material behavier
under differemt loading conditions. A constitutive equation based on the
test data under one loading condition should work well for other loading
conditions as long as the strain rates are in the same range as those under
which the material constants are determined.

ERECEDING PAGE BLANK NOT FILMED
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Introduc;}p&

Clagsically the constitutive equations used in the design of conponents
of fast breeder reactor (FER) or pressure vessels are mostly bosed on the
ldea that the total setrain can be decomposed 1lute elastic strain, plastic
gtrein, creep strain, and thermal strain (1). The elastic strain and the
plastic strain are defined as the Instantanecus response to stress change
which 18 time-independent, while the creep strein Is& defined as the time-
dependent straip under constent lced. The corstitutive equations for the
plestic strain component are based on the classical rate-independent plas-
ticity theory in which the concept of yield surface plays a very importent
role; and those for the creep strain comporent are generally based on strain-
hardening viscous flow rule which, ip mest of the cases, needs to be modified
ir order to incorpcrate the asnisotropy induced by deformation (2Z). Since the
inelastic strain Je& decomposed into plastic strein end creep strain, there
have also been some follcwup studies on the interaction between creep and
plasticity (3).

The new trend in modelling the inelastic material behavior, however, is
toward a unified appreach in which the traditicral creep arnd plesticity are
treated by a unified equation. This approach is reasonable based on the fact
that both creep strain snd plastic strain are contributed mainly by the same
deformnatior mechanism, i.e., dislocation motion. On the other hand, the way
te distinguish creep strain from plastic strain in the traditicnal approach
is also somewhat too arbitrary. It is actually based on the way tle material
is tested. For example, in the study of creep-plasticity interaction, the
material testing usually started with a constant strain rate Joading followed
by a period of constant-load loading, cr vice versa. The inelatic strain
accumulated during constant strain rate loading is corcidered &s plastic
strain, while the strain accumulated during the constant load period is
treated as creep strain. This definition probably follows the traditiorn that
plasticity is usually studied with ccpstsnt strain rate tests, while creep is
studied with the constant losd test.

In the current study, both constant strasin-rate tests and creep tests
were performed on 2618 aluminum alloy. The strain rates sdepted were in the
range from 10 “/sec to 10 “/sec. The simularities between these two tests
were investiguted. The purpeses of this study are:

1) To justify the unified theory for creep and plasticity.
2) To study the concept of creep~plssticity dnteraction.

3) Tc compore the steady state response of engineering msterials under
constant—-strein rate Joadings with that vurder constant-load load-
ings.

In addition, one test under combired tensior and torsior Joadings was
alce performed te study the effects of shear stress on the ax»xial stress-
strain relation at constant strain rate,

Material and Specimen

The materjal employed in the present work was aluminum forging alloy
2618-T61 which was the same kind of material as that used in previous work
(4-7), but obtained three years later from the same source, probably from a
different batch. The heat treatment was carried out &=t different place tooc.
Scme varjatione in the mechanics) properties were found betweern these two
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batches. However, since previous work were not referred in the current
study, these variatiors may be disregarded.

Specimens were thin-walled tubes of circular cross secticn. The nominal
outside diameter, wall thickness, and gage Jength were 25.4, 1.5, and 101.6
mm respectively.

Experimental Apparatus

All the tests were performed with a combined temsion and torsion creep
machine whose detajls csn be found ir the paper by Findley and Gjelsvik (8).
The relative axial displacement between the gage points was measured by a
matched pair of limear variable differential travsformers (LVDT) using an
£C-rull balance system. Cne LVDT was attached to the gage points through
four invar rods and the other (referewnce IVDT) was connected to & micrometer.
Before the test, the outputs of these two LVDT's cencelled each other, i.e.,
balanced. During the test some imbalance was induced, due te the relative
displacemrent between the gage points, which would be balanced out again with
the reference LVDT by turning the nicrometer, The relative displacement
could then be read from the micrometer.

In order to use the current mochkine to perform controlled strain-rate
tests, some modificiations were necesseary. The desired strain rates were
cbtained by use of several AC reversible synchronous metors to drive the
reference LVDT at specified speeds and an servehydraulic system to apply the
lecad in such a way that the output from the IVDT attached to the specimen
always matches with that of the reference LVDT, i.e., the specimen ig
stretched at a speed determined by the motor. Unlike the tests done in a
conventional tersile testing machine with constant "crosshead" speed, the
current tests are truly strain rate controlled tests because the serve-
hydraulic system is driven directly by the output frcm the extensometer.

The specimen was heated internally by & quartz-tube, radiant heating
lamp and externally by two recistance heaters at the ends just outside the
gage length. The lamp and the end heaters were controlled separately by two
sets of Research Incorporated temperature corntroller and power controller.
The test temperature wes 20C°C, Prior to testing, the specimen was soaked at
the testing temperature for approximately 18 hours. The details of the
choice of 18 hours as the scaking time can be fourd in the paper by Ding and
Findley (7).

Experdmental Results

The experimental results are shown in the attached figures. 1In figure
1(b) the so0lid lire is the test dats opn the stress-strain relation for a
controlleqfstrajn~rare tes under stepwlse jjgreased strain rates, nemely
1.04 x 10 /sec, 1.0 x 10 "/seg, and 1.0 x 10 /sec followed by unloeoading at
& strain rate cf 1.04 x 10 ~/sec as shown in figure 1(a). Figure 2 is
another controlled strain rate test under stepwise decreased strain rates,
For both tests, a steady state can be found for each particular strain rate
in which the stress remsins constant. The steady state stress at each step
in figure 1(b) is lower than that Jn the corresponding step with the same
gtrain rate iv figure 2(b), respectively. This may be due to the different
strain histories snd strain rate histordes involved in these two tests. In
figure 1(b), it can also be seen that the slope during unloading is higher
than that during loading. This may be explained as follows: during loading,
the time-dependent strain is developed in the same direction as the imposed
straip rate direction, whjile during unloading, they are oprosite tc each
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other. Therefore, for the same imposed strain rate, less stress may be
required during lcading than during unleoading. Similar observations can also
be found in figure 7(b). Fowever, loading and unloading were carried out at
different strain rates in this test.

The creep test data under step loadings are shewn in figure 3. The
stress at each step was chosen the same as the steady state stress at the
corresponding step In figure 1, namely, 172.5 MPa, 195 MPa, and 216 MPa,
regpectively. Similar to figure 1, a steady state was also fcurd in each
loading step. A comparison of the material responses between these two tests
is shown in figure 4. The steady state responses at each step are quite
close to each other. The deviation is within 107. The major differences
between these two tests seem mainly on the transient responses.

Shown in figure 5 are the test results of axial loading at constant
strain rate combired with stepwise varjed torsional loadirgs. The effect of
shesr stress con the ongoing axial material response to a constant-strain-rate
loading can be clearly seen. It is quite interesting to notice that the
combination of axial stress and shear stress gt rew steady state for steps 2,
3, and 4 satisfy the Tresca relation, i.e, ¢ + 41" = constant, as shcewn in
figure 5(¢). FHowever, the inplication of this relation 1s not quite clear in
this case. From figure 5(b), it can also be seen that the steady state axial
stress in the later stage, i.e., when the shear stress 1s completely
released, is lower than the initial steady state stress before the shear
stress was applied. Similar observations can alsc be fourid for the two steps
with the same shear stress, namely 55.6 MPa., This may indicate that some
kird of softening may have occurred.

In figure 6, the stress-strain curves at different strain rates dis-
cussed earlier were put together. As shown in this figure, a distinguishable
elastic region can be found for each curve. The point at which the curve
starts to deviate from the straight line may be defined as the sc-called
yield stress and the dependence cf the yield stress on strain rate may be
interpreted as the rate-sensitive yielding in the theory of viscoplasticity.
From these results, the first conclusion we may draw is that the yield stress
is not a well-defined term at high temperature due to its deperdence on the
loading condition. In other words, yield stress is nct a material property.
The applicability of classicial rate-independent plasticity thecry, in which
the concept of yield stress is essential, to describe the deformation et high
temperature is therefore questionable.

Seccndly, following the proposal by Rice (9), the sbove rate-sensitive
vielding can actuvally be interpreted as a reflection of the role of the
time-dependent strajr (or creep strain). If the loading rate is bigh, the
time-dependent strain does pot have ernough time to develop durirg loading, a
well-defined elastic region may be found. When the loading rate gets lower,
this elastic region should gradually diminish due to the involvement of the
time-dependent strain. When the materials reach the steady state, the
time~-dependent strain rate at a particular stress level is fixed. In a
constant strain rate test, when the stress is increased to s level in which
the time-dependent strain rate is equal to the dimposed strein rate, the
stress will stay constant. At room temperature, the creep rate of most
structural materials is so low that the stress~strsin curve based on loading
times of order of minutes does nct differ sigrificantly from those based on
seconds, hours, or days. This may be considered as a limiting case for which
the rate-independent plasticity theory could be applied.
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Based on the above discussion, we may conclude that at high temperature,
all the materials are essentially rate-sensitive, i.e., time-dependent. The
traditional definition of plastic strain and creep strain at high temperature
based on material testing only refers to different macroscopic material
behavior under differemt Jloading conditions, i.e., constant strain rate
loading versus constant load loading. The "instantaneous' response has no
meaning unless the loading rate (or strain rate) is specified. Consequently,
there seems no physical background to study the so-called creep~plasticity
interaction. In fact, when the steady state is reached, both load and strain
rate asre constant. There is even nc distinction between creep test and
coustent strain rate test any more.

Modeling of the Experjmental Results

In the previous work (4-7), a viscous-viscoelastic model was developed
to model the experimental results of creep under variable biaxial loadings.
The material constants were determined by quite a few creep and creep recov-
ery tests. As mentioned earlier, since there exist some variations in the
mechanical properties between the specimens in the current study and those in
previous work no attempts was made to use previous theoretical model to
predict the current experimental results or to redetermine the material
constants due to the limited amount of specimen. Instead, some other con-
stitutive equations were considered.

Due to 1its simplicity, the constitutive equation proposed by Bodner (10)
and Mertzer (11,12) were tried to model the current experimental results.

For uniaxial stress state, the constitutive equation can be stated as
follows:

2. Do -2 exp [-(1/2) (z2/0H)™] (1)
SEl
and z = m(z1 - z)céP - A(z -~ zo)q (2)

where éP is the 1nelastic strain rate, 0 is the applied stress, z is a
scalar state variable whose initial value and the saturation value are z and
z. respectively, and is assumed to be a function of plastic work. D , n, m,
A, q are the material constants. As shown in eqn. (3}, the rate of cgange of
z(z) is governed by work-hardening, m(z1 - z) o¢ , and softening due to
thermal recovery, A(z - zo)q.

As shown in the paper by Merzer and Bodner (11), if neglecting the
recovery term, the above constitutive equation can be integrated to get an
explicit stress-plastic strain relation for the case whben the plastic strain
rate 1is constant. The assumption of constant plastic strain rate can
actually be applied to the later stages of the three curves shewn in figure 6
because the stress increment and thus the elastic strain increment, is slmost
zero,

By fitting the integrated equation to these three curves, the material
parameters used in equations (1) and (2) can be deterg&ned for the current
material.. The values of these constants are: D : 10 sec 3 n: 0.,79; m:
19.0 MPa "; z : 525 MPa; z,: 1092 MPa. The theor8tical results are shown in
figures 1(b),02(b), and 3(b) as dotted lines. Because equations (1) and (2)
was for uniaxial stress state, no theoretical predictions was made for the
data shown in figure 5.
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Discussion of The Theoretical Model

The theoretical results shown in figures 1(b) and 2(b) showed some dis-
crepancies with the experimental data. Furthermore, the predicted steady
state stress at each step in figure 1(b) 1s almost the same as that at the
corresponding step in figure 2(b) with the same imposed strain rate, respec-
tively. This was found to be due to the fact that in both cases the scalar
state variable z almost reached its saturation value z, at the ené of the
first step and stayed there for the whole test. With a comstant value cf z,
a unique stress should of course be expected for a specified strain rate.

When equations (1) and (2) are applied to the creep test, figure 3, it
can be seen that the general trend cf the material behavior seems satis-
factorily described especially for the transient respense at the first
loading step. The results could be imprcved by including the thermal
recovery term which seems quite Iimportant in the low strain rate tests.
However, the current experimental information is not enough for identifying
this term.

Based on the above results, it seems reasonable to conclude that
constitutive equations based on the data from constant strain rate material
testing should be able to predict the material behavior in a constant load
creep test or vice versa, 1.e., a unified equaticn should work well for
various kinds of loadings. However, there is one very important point which
needs to be clarified here. 1In the current tests, all the constant strain
rate tests were performed at the strain ratg& which are compsrable to those
during a constant load creep test, namely 10 “/sec to 10 ~/sec. However, the
strain rates usually used in the study .of plastic@gy, e.g., creep-plasticity
interaction, are in the range from 10 “/sec to 10 “/sec which are generally
available in a commercial testing machine. In this case, the constitutive
equation derived from the data from creep tests may not be able to predict
the material behavior during a constant strain rate tests because of dif-
ferent ranges of strain rates involved. Therefore, it seems important to
keep in mind that in order to develop a unified corstitutive equation which
can interpret the traditiomal creep-plasticity interaction, test data cover-
ing a wide range of strain rates seems necessary.

Conclusions

Metals are essentially rate sensitive at elevated temperatures. The
traditional definition of creep and plasticity used in the classical creep
analysis is actually a reflection of the material behavior under different
loading conditions. A unified constitutive equation should work well for
various kinds of loading conditions as long as the strain rates are compar-
able to each other.
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Figure 1(a): Loading program for a controlled strain rate test under
stepwise increased strain rates.
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MODELED BY THE VISCOPLASTICITY THEORY BASED ON OVERSTRESS
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Aeronautical Engineering & Mechanics

Rensselaer Polytechnic Institute
Troy, NY 12180-3590

The isotropic theory of viscoplasticity based on overstress does not use a
yield surface or a loading and unloading criterion. The inelastic strain rate
depends on overstress, the difference between the stress and the equilibrium stress,
and is assumed to be rate-dependent. Special attention is paid to the modeling of
elastic regions,

For the modeling of cyclic hardening, such as observed in annealed Type 304
Stainless Steel, an additional growth law for a scalar quantity which represents
the rate-independent asymptotic value of the equilibrium stress is added. It is
made to increase with inelastic deformation using a new scalar measure which differ-
entiates between nonproportional and proportional loading.

The theory is applied to correlate uniaxial data under two-step amplitude
loading including the effect of further hardening at the high amplitude and propor-
tional and nonproportional cyclic loadings. Results are compared with corresponding
experiments.

INTRODUCTION

For the modeling of the rate(time)-dependent, cyclic neutral, inelastic
deformation behavior of metals, the theory of viscoplasticity based on overstress
(VBO) with a differential growth law for the equilibrium stress was proposed [1].
When compared with biaxial experiments it was shown to predict the room temperature
deformation behavior of an Aluminum alloy under both monotonic and cyclic propor-
tional and nonproportional loadings [2].

Some alloys such as annealed copper [3], Type 304 Stainless Steel [4,5] and
316L Stainless Steel [6,7] exhibit complicated cyclic hardening phenomena. For
their modeling an additional growth law for a scalar quantity is introduced in VBO,
Its growth with inelastic deformation is governed by a new scalar measure which dif-
ferentiates between proportional and nonproportional loadings. The effect is similar
to isotropic hardening in classical plasticity. Unlike other approaches, e.g. [6],
neither an updating rule (or help function) nor a loading-unloading criterion is
needed in this formulation,

The purposes of the present paper are to give an isotropic formulation of VBO
applicable for cyclic hardening and to demonstrate its predictive capability in pro-
portional and nonproportional strain-controlled cyclic loadings. Some results of
numerical experiments are compared with corresponding room temperature results on
Type 304 Stainless Steel.
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The isotropic formulation consists of the following differential equations
and functions:

l1+v s l1+v

é E S+Ek[I“](s g). 0))
VT ITE - 6 BT gty @
er(d) = 222 () (3

b[I _,A] = ETT::%T—:TE;' ’ (4)

I‘o = (-g tr(s- gd)z)uz ’ (5)

i (L@ ®

- (et ) o

P = (tr(.Qsz.T>)1/2 : (8)

Q- Einéin _ éingin , (9)

A* = aliiaz + 8550‘6 - a3(A-Ao)a“ . (10)
A= |br] +aghr (11)

8

1 +8 6. )+

where T, 0 = T4v ( 2085850+ 84084k

.a +a_=1 and

T-2v 2v 844 kl) 8

aa-a7-u (0<u<l). For cyclic neutral behavior the constants 81‘ 33, a5 are

zero; a., a,, and Eqs.(7)~(11) are not necessary.

7" 78

The system of differential equations introduced in the above is similar to
that obtained in [2] with the exception that a dependence of Y on A and a
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growth law for A are added. The former ensures that the linear elastic regions
expand when A increases. In addition to the inelastic strain path length defined
in (6), two additional scalar measures are introduced in (7) and (8). The last
measure is nonzero when the inelastic strain and the inelastic strain rate are not
collinear. This occurs in nonproportional loading. The quantity defined in (7)
is of the same order as the one defined in (8) and accumulates in every inelastic
loading. These quantities have been used to correlate experimental data [8].

To illustrate the capability of the newly proposed growth law for A consider
two axial-torsion tests; one with proportional straining and the other with 90°
out-of-phase straining. It is clear that, though Pj are not zero, Py =0 in the
former case and P, #0 in the latter case. Therefore Eq.(10) gives a different
growth in the two cases which is reflected in the magnitude of P,. If we consider
two cyclic tests with different strain ranges, again Eq.(10) gives a different growth
depending on the inelastic strain because £I" is included in Ppo and Pj. The model
can predict a further hardening at the high amplitude under two-step amplitude load-
ing even if saturation was reached at the first amplitude. If a small strain range
is performed following a large strain range in the two-step amplitude loading, the
model predicts a stabilized stress corresponding to the most recent level irrespec-
tive of the prior history. Equation (11) 1is introduced to delay the process of
reaching the stabilized value.

Aside from these qualitative predictions, the details of deformation behavior
must be evaluated through numerical experiments, The constants and functions of the
theory were selected to represent the Type 304 Stainless Steel. All numerical integra-
tions were performed using IMSL routine DGEAR on an IBM AT personal computer.

NUMERICAL EXPERIMENTS AND DISCUSSIONS

The procedure introduced in [1,2] for determining the constants and functions
is still useful. Stabilized stresses for different strain ranges under both uniaxial
and 90° out-of-phase loadings are necessary for the identifications of the constants
associated with the growth law for A. The details can be found in [9]. The constants
and functions for annealed Type 304 SS are listed in Table 1.

. - Simulations of the following four tests are reported, all conducted at the same
equivalent strain rate of ée=-0.0003 s~1. The first test is a two amplitude step~-up
uniaxial test with €4, =0.0056 for 15 cycles followed by 15 cycles with ¢,=0.008. 1In
the second test the sequence of the applied strain amplitudes is reversed. 1In the
third test the second block consisted of a 90° out-of-phase loading for 5 cycles with
the same equivalent strain amplitude as the previous uniaxial c¢ycling to near satura-
tion. Lastly a 90° out-of-phase cyclic test without any prior deformation was per-
formed with €, =0.0056 for 5 cycles.

The results for the first three tests are presented in Figure 1, The theory
correlates the experimental result reasonably well in normal cyclic hardening tests
and gives similar responses as reported in [6] in both further hardening and partial
fading memory cases. It also demonstrates that an additional hardening is experienced
in 90 degrees out~of-phase loading even when the material had almost saturated under
proportional loading with the same strain range. This behavior is found in experi-
ments [3,5]. It was shown [5] that the cyclic hardening behavior during in-phase
loading (axial, torsional and proportional loading) can be correlated on the basis
of the v, Mises equivalent stress and the accumulated strain path length, the integral
of (6). The present theory uses these quantities, see (5) and (6). On the basis of
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the results in Fig. 1 it is reasonable to assume that the theory can correlate the
hardening in in-phase loading.

The correlation for the 90° out-of-phase loading is shown in Figure 2 where the
experimental result for the 5th cycle is also plotted. Comparison of the saturation
levels for out-of-phase loading in Fig. 1 (path AB") and Fig. 2 (saturation is almost
reached after 5 cycles) shows that they are almost equal. It was found in {3] that
the saturated stress was not dependent on prior history. This fact is represented
by the present theory. Even though the model gives a correct stabilized stress in
90° out-of-phase loading, the description of the transient behavior needs improvement.
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TABLE 1 MATERIAL CONSTANTS AND FUNCTIONS®

Material constants:
0.0653 Mpal™24 -1

E = 195000 MPa ag =
E, = 2000 MPa a, = 0.703

t 4 (1-ag)
A, = 115 MPa a; = 41.17 MPas” as
v = 0.5 a, = 0.2062

~(1-ag) ©
a; = 380000 MPa s ag = 0.495
a2 = 0,925 a8 = 0.505

Viscosity function:
- xL, -k
k[x] = k,(1+ kz) 3,
k1=314200 s, k2=60 MPa, k3=21.98

Shape modulus function:
vlx,y] = ¢y [y] + (cy-c [y]llexp(-cgx)

cyly] = Hy + Hyy

=0.0783 MPa™1, H,=74740 MPa, H.=37.04

=182500 MPa, ) 0

Co €3

*
All x and y are in units of MPa.
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A number of different formulatfons exist for state variable or "unified"
creep-plasticity theory [1-10]. There 1is, however, a common isothermal

framework for many of these models which include backstress, e.g.

€" = f(Ils - all,x) (s - a) (1)
é = hy ; " Ty 0 (2)
‘= he En I " Ty (3)

where h, and hg are scalar hardening functions, r, and rg are scalar recovery
functions, a is the backstress, & is the drag stress, s ijs deviatoric stress,

2N is the inelastic strain rate, and I1&N|| = [&n:en]1/2,

1 school of Mechanical Engineering, Georgia Institute of Technology,
Atlanta, GA 30332.

2 Mechanical Engineering, University of Connecticut, Storrs, CT 06268.
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It is usual to first select hardening and recovery functions which encom-
pass relevant uniaxial phenomenological behavior, and then to fit the
associated material constants to this data using appropriate multivariate
error minimization procedures. There 1is a somewhat prevalent assertion among
existing theories that the directional index for the hardening term in equa-

tion (2) is the inelastic strain rate, i.e.

e

[}
iMme
3

(4)

Several theories [2-3, 11-12] include a dynamic recovery term with a as

the directional index, 1.e.

_en -1 on
g =€ - ha hDglle I (5)

~

where hp is a scalar dynamic recovery function. Uniaxial testing alone is
insufficient to validate the directional 1index of the dynamic recovery term
since a is collinear with &0, This collinearity is also likely responsible
for th; absence of the dynamic recovery term in many theories.

An important attribute of multiaxial nonproportional loading is the non-
collinearity of E" and a. As will be shown in this paper, the need for the
dynamic recovery term can be established from cyclic nonproportional biaxial
tests. Furthermore, it is possible to comment on the relative magnitude of
the direct hardening and dynamic recovery coefficients and to assess the
accuracy of the direct hardening and dynamic recovery directional indices

based on selected tests. Axial-torsional experiments conducted with type 304

stainless steel at room temperature and Hastelloy-X at 649°C will be discussed.
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Brief Discussion of Results

The need for the dynamic recovery term is evidenced in analysis of the
type 304 stainless steel response. As shown in Figure 1, the backstress rate
direction much more accurately approaches tangency to the backstress path
(assuming constant, rate-independent Mises yield surface radius) with the
addition of the dynamic recovery term.

Allowing for rate-dependent response, data from sinusoidal 90° out-of-

phase tests on Hastelloy-X were analyzed. Two possibilities were considered.
Firstly, the coefficients of the direct and dynamic recovery terms, h, and hp
in equation (5), were considered scalars. Secondly, they were considered as
tensor operators of diagonal form. Several admissible backstress paths were
determined by fixed point iteration of an equation reflecting the constraint
that backstress must lie along the backward projection of the inelastic strain
rate direction from the current stress point. Each assumed initial value of
backstress produced a unique, possible backstress path. For each path, the
direct hardening and dynamic recovery coefficients were determined by least
squares fit to the loading cycle; It was determined that the coefficient of
direct hardening is accurately described as a scalar, inferring adequacy of
"the inelastic strain rate as the directional index. For the dynamic recovery
term, however, the data suggest that a tensor-valued coefficient QD is appro-
priate, inferring the inadequacy of backstress a as a directional index.
Refer to Figure 2 for a comparison of the correlation achieved by using scalar
and tensor-valued coefficients.

Though limited in number and scope, these results indicate the potential
utility of nonproportional biaxial testing in generalization of state variable

cyclic viscoplasticity theories.
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Conclusions
From cyclic, strain-controlled, nonproportional tests on type 304 stain-

less steel and Hastelloy-X, the following statements may be made:

1. A dynamic recovery term 1s essential to properly model the backstress
evolution,

2. From analysis of Hastelloy-X data obtained at 649°C, the inelastic strain
rate appears to be a satisfactory directional index for direct hardening,
but the backstress appears to be an inappropriate directional index of
dynamic recovery.

3. Sinusoidal, 90* out-of-phase axial torsional tests can be very useful in
aiding determination of backstress evolution functions, including both
directional indices and scalar hardening functions, by virtue of the asso-
ciated approximately constant magnitudes of overstress, inelastic strain
rate, and effective stress. Such tests have previously been associated
with the study of nonproportional hardening effects but have more far

ranging applications.
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AN EXPERIMENTAL COMPARISON OF SEVERAL CURRENT VISCOPLASTIC
CONSTITUTIVE MODELS AT ELEVATED TEMPERATURE

G.H. James, P.K. Imbrie, P.S. Hill, D.H. Allen, W.E. Haisler
Texas A&M University
College Station, Texas 77843

Four current viscoplastic models are compared experimentally for Inconel
718 at 593° C. This material system responds with apparent negative strain
rate sensitivity, undergoes cyclic work softening, and is susceptible to low
cycle fatigue. The models used include Bodner's anisotropic model, Krieg,
Swearengen, and Rhode's model, Schmidt and Miller's model, and Walker's
exponential model. Schmidt and Miller's model and Walker's model correct for
negative strain rate sensitivity response. A correction similar to Schmidt's
is applied to the models of Bodner and Krieg, et al.

A series of tests has been performed to create a sufficient data base |
from which to evaluate material constants. A method to evaluate the constants i
is developed which draws on common assumptions for this type of material,
recent advances by other researchers, and iterative techniques. A complex
history test, not used in calculating the constants, is then used to compare
the predictive capabilities of the models.

The combination of exponentially based inelastic strain rate equations
and dynamic recovery is shown to model this material system with the greatest
success. The method of constant calculation developed in this work was
successfully applied to the complex material response encountered. Backstress
measuring tests were found to be invaluable and warrant further development.
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INTRODUCTION

This paper experimentally compares four current viscoplastic models for
metals at elevated temperature. The primary objective of this work is to
uncover the mathematical forms which model reality most successfully and to
develop basic understanding of the models. A secondary objective is to
develop methods of constant calculation which are systematic and repeatable.
A final objective is to develop experimental tests and test software to
support viscoplastic modeling.

This research produces many positive results. First, the aspects of each
model which need further development are uncovered. Also, the most accurate
mathematical forms of the models are determined. Third, basic understanding
of the models is generated. Such understanding is necessary for actual
engineering application of the models and for expanding the capabilities of
the models. Fourth, systematic methods of material parameter evaluation are
developed which draw on advances by all the modelers. Systematic constant
calculation methods make the models much easier to use by researchers and
engineers in the field and advance the technology toward automation and
standardization. Finally, experimental techniques and needs are developed or
reported which can either lead or support theoretical advances.

MATERIAL CONSIDERATIONS

The material used in this work was Inconel 718 and was provided by NASA
Lewis Research Center in Cleveland, Ohio. The temperature used was 593° C.
(1100° F.). The average value of Young's modulus was 169.9 GPa. The material
used in this work had .2% yield stress values between 792 and 903 MPa. The
material cyclically work softened. Strain ageing and negative strain rate

sensitivity effects were observed between the strain rates of 1X10'5 sec‘1

and
1X10'3 sec’l. A fatigue life of 5 to 30 cycles resulted when specimens were
cycled at strain amplitudes over +1% strain. Lower strain rates and the
inclusion of creep hold times also adversely affected the fatigue life.

A11 samples were subjected to the same heat treatment prior to testing.
The heat treatment used was given by the Metals Handbook [1]. The material

was annealed at 954° C for one hour and then 011 quenched. The next step was
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ageing at 718° C. for eight hours with a furnace cool. The furnace used was a
Hevi Duty Electric Co. type 66-P. Temperature was monitored with a Keithly
871 Digital Thermometer. The resulting material state was found to be the
easiest to machine. Therefore, the heat treatment was carried out before
machining and again before testing.

OVERVIEW OF MODELS

The models chosen for this work include Bodner's anisotropic model [2],
Krieg, Swearengen, and Rhode's model [3], Schmidt and Miller's model [4], and
Walker's exponential model [2]. These models were chosen because they are
under active development, methods of determination of the constants have been
reported, and some attempt has been made or is being made to expand them to
transient temperature modeling. The material utilized in this work responded
with negative strain rate sensitivity due to strain ageing. The models of
Schmidt and Miller and Walker were able to handle this phenomenon. The models
of Bodner and Krieg, et al. needed corrections to handle this effect. The
models are reviewed below.

Bodner's Anisotropic Model
The growth laws for Bodner's anisotropic model have the following form:

. 2 l Z
el —— Doexp{ ~ — [—;—]zn] sgn o (1)
3
z=-12%4 ZA= ZI+ B sgn o (2)
I
. 1°- 17
I Iy 2
Z'=m| z,-17) Np" AT 7! ]rl (3)

A (4)

B =m,( Z,59n o - Z"] Qp— AZZl[l%%]rz sgn Z
where Dy, n, my, Zy, Zyo, Ay, T, Mo, I3, Ay, and ry are material constants.

The flow law is exponentially based as seen in equation (1). The model
gives a limiting strain rate in shear of Dy [5]. The term —leI Wp is a
dynamic recovery term for ZA in the isotropic growth law (3)
and - A2 [(Z-1,) Z;l]rl is a static thermal recovery term. B is a
uniaxial representation of a second order tensor in the multiaxial state which
handles directional or anisotropic hardening. B is assumed to act as an
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isotropic variable on an incremental basis [6]. The growth law for B (4) has
the same components as the growth law for D (3).

Bodner's model is seen to use the rate of plastic work instead of
inelastic strain rate as the measure of work hardening (3,4). This is
designed to allow for better modelling of strain rate jump tests [7]. The
correction used to account for the strain ageing effects was Schmidt and
Miller's non-interactive solute strengthening correction [4]. The inelastic
strain rate equation was then written in the following form:

Z+F

1 75—— D,exp|- ; ( = sol )Zn] sgn o (5)
.1

Feop= F expf - | log(|¢ I)B- log(J) 2 (6)

where F is the maximum correction, J is the strain rate of maximum correction,
and g is the width of correction.
Krieg, Swearengen, and Rhode's Model

Krieg, et al.'s growth laws have the following form:

el ¢ (—9—6—§—)n sgn o (7)
R 2

B = Alél- AZBZ[ elAsB)_ ] sgn B (8)
D=Az2-A(D-D)" (9)

where C, n, Al, Az, A3, A4, and A5 are material constants.

The flow law is seen to be a power law based equation. The back stress
and drag stress growth laws (8,9) contain static thermal recovery terms but no
dynamic recovery terms. The recovery term in (8) is based on a dislocation
climb model by Friedel. The recovery term in (9) is based on a special case
of the same climb recovery model used in (8) [3,8].

Schmidt and Miller's non-interactive solute strengthening correction was
again used with this model to produce the following inelastic strain rate
equation:

.1 o -B
¢'= C(——=—F—) sgn(o-B) (10)
D+ Fso1
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tog(1¢}]) - log(9) 1)
8

Feor= Fexp{ - |

sol

Schmidt and Miller's Model
Schmidt and Miller's growth laws have the following form:

el= B sinh(-2E—)"*}" sqgn( o - B)
S

ol

el wB'{ sinh( A,1B] ) }" sgn( B)

(o]
i

.

o
{

A
= Hyletj(c,+ 18] - ‘K%' D’) - H,C,B'{ sinh( A,D°) }"

.1
Foor= F exp[ - ( Tog(|é I)B- Tog(J) )2}

where B', n, Hl’ As Ho, C2, As, F, J, and g are material constants.

(11)

(12)

(13)

(14)

(15)

The flow law has the form of a hyperbolic sine. This form was chosen to

model creep response better [9]. This same form is found in the stat
thermal recovery terms of the back stress and drag stress growth laws

ic

(13,14). The drag stress hardening term contains a hardening term, a dynamic

recovery term, and a term which couples drag stress hardening to back stress

magnitude. These three terms provide the proper cyclic, hardening, softening

and saturation behavior [9]. The same non-interactive solute strengthening

correction ( Feol ) as mentioned earlier is seen in this model.
Walker's Exponential Model

The growth laws for Walker's exponential model have the following form

[2,10]:
1. exp (‘i'ﬁ‘g‘] -l sgn(s-8)
B = n- 8 [ [ nye nyexp(on | Tog(lehy 1) ] &+ ng)
0
D = D,+ D,exp(-n,R)
R = |el]

(16)

(17)

(18)

(19)

where 8, Nos N3, Ngy Ng, Rys Ngs 01, DZ’ and ny are material constants.

This version of Walker's flow law (16) is based on an exponential
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function. The term nzéI is seen to be a work hardening term in the back

stress growth law. The term B [ n,+ n“exp(-n5|1og(|§|/§°|)|] R 1s a dynamic
recovery term. Negative strain rate sensitivity effects can be modelled with
the term n“exp(-n5|1og(|ﬁ|/éo)|) . Back stress thermal recovery is handled by
the B n, term. Orag stress hardening is modelled through

the D,exp(-n,R) term. No provision is made for drag stress recovery in this
model.

EXPERIMENTAL PROGRAM

The basic experimental program consisted of the following tests:
(1) 2 monotonic tension tests to 1.5% strain ( strain rates of
3.15x1073 sec™! and 7.25x1076 sec™!);
(2) 5 fully reversed cyclic tests to + .8% strain ( strain rates
between 1.00X10™3 sec™! and 7.63x107 sec! R
(3) 5 constant load creep tests ( applied stresses between 820 MPa
and 958 MPa );
(4) 4 back stress measuring tests during cyclic loading and 4 during
secondary creep; and
(5) 1 complex history test.
Table 1 provides more specific information on the test program. Column 1
provides the test number. The type of test is given in column 2. The strain
rate and strain limits are given in columns 3 and 4. The applied stresses for
the creep tests are given in column 5. A complete data set in tabular form is
provided in reference [11].
Back Stress Measuring Tests

Back stress measuring tests during secondary creep as described by Krieg,
et al. [3] and during saturated cyclic loading as used by Walker [12] were
performed in this work. The cyclic back stress numbers were obtained by
holding a saturated cyclic test at various points on the unloading curve,
switching to load control and monitoring the strain rate following the hold.
The material was recycled and a hold time at another stress value was carried
out. Fatigue lifetime problems for the material used in this work did not
permit complete saturation of the microstructure for fear of sample
fracture. The criterion used to define saturation in this work was a cycle to
cycle variation of the maximum stress of less than 6.89 mpa. These conditions
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Table 1 - Test Program

Test | Type capp1 “Vim %app

sec” MPa
70 tension | 3.151E-3 1.5%
71 tension | 7.253E-6 1.5%
86 cyclic 1.002E-3 | +/-.8%
56 cyclic 9.966E-4 | +/-.8%
65 cyclic 3.127E-4 | +/-.8%
83 cyclic 9.926E-5 | +/-.8%
80 cyclic 3.054E-5 | +/-.8%
72 cyclic 7.626E-6 | +/-.8%

64 creep 956.3
63 creep 922.6
62 creep 875.0
61 creep 854.4
60 creep 819.9

84 back 2.812E-3 | +/-.8%
88 back 9.272E-4 | +/-.8%
81 back 8.635k-4 | +/-.8%
65 back 3.127E-4 | +/-.8%

63 back 922.6
62 back 875.0
61 back 854.4
60 back 819.9

89 complex

were met after 10 to 15 cycles for this material.

A linear least squares regression to the strain rate data provided a
strain rate at each hold time. Each transient test had to be individually
scrutinized to decide how many points to consider in the regression analysis
as the onset of thermal recovery following a hold time was a very subjective
decision. The back stress was assumed to be equal to the hold stress at which
a zero strain rate was produced. This hold stress was determined by the use
of a linear least squares curve fit to the strain rate versus hold stress
data.

The creep back stress numbers were obtained in a similar fashion. The
stress on a sample in secondary creep was dropped to various lower levels.
The inelastic strain rate immediately following each drop was analyzed in the
same manner as with the cyclic tests.

The back stress numbers were invaluable in estimating some material
constants. The results were also promising enough to warrant further study.
The procedures used here could be greatly enhanced by equipment with greater
resolution such as used by Jones, et al. [13] and less subjective methods of
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data reduction such as the method of Blum and Finkel [14]. Other techniques
such as torsional cycling used by E11lis and Robinson could also be considered
{15]. The stress transient test [16] might also provide information for a
material such a Inconel 718 which suffers from a short fatigue life when
cycled. Reference [11] contains more information on the results observed and
software developed for these tests.

EXPERIMENTAL APPARATUS

The load frame utilized in these tests was an MTS (Materials Test System)
model 880 electrohydraulic testing machine shown in Fig. 1. MTS 652.01 Water-
cooled hydraulic grips allowed fully reversed cyclic tests to be carried out
at high temperature. The frame was controlled by a Digital Micro PDP-11
computer. Computer programs were written to run monotonic tension tests,
cyclic tests, cyclic tests with hold times, creep tests, and creep stress drop
tests. The Micro PDP-11 also handled data acquisition functions. An MTS
661.21A-02 50 KN load cell was the load transducer. An MTS 632.41B-02 axial
extensometer was the strain transducer. This device had quartz extension rods
which contacted the sample at two 120° punch holes. The material samples
designed to ASTM E606-77T specifications for low cycle fatigue specimens.

An MTS 652 three-zone clamshell furnace and three Research Incorporated
63911 Process Temperature and Power Controllers were used for temperature
control. Temperature Measurement was handled by six 28 gauge K-type
thermocouples. These were placed in contact with the sample. Three
thermocouples were fed into a Fluke 2176A Digital Thermometer for readout.
These were placed with one each at the top, middle, and bottom of the gauge
section. The other three thermocouples were fed into the temperature
controllers. These were placed in the center of the furnace zone each was to
sense with one thermocouple placed in the center of the gauge section and one
on each grip.

The thermocouples were fastened to the grips by fiberglass thread
attached to the sample by self-supporting means. The thermocouples at the top
and bottom of the gauge section were wound around the sample. The
thermocouples used in the center of the gauge section were brought into the
oven from different directions and tied to each other. These thermocouples
were then wound around the sample for contact. Welding the thermocouples to

260



the sample would have produced harder contacts with more reliable temperature
measurement. However premature failure occurred at the welds.

CALCULATION OF MATERIAL CONSTANTS

The complex response of Inconel 718 at 593° C prompted flexible methods
of constant calculation to be developed. The method for calculating constants
for the models began by making a series of judicious assumptions which aliowed
commonly used constant calculation schemes to produce initial estimates of the
constants. Some nonlinearity was avoided in this step and was reintroduced by
a series of repeatable iterations to the final constants. The iterative step
numerically integrated the models to predict the stress-strain response at a
certain point. One material constant was then changed to match the prediction
to the experimental value at this point. Another material constant was then
changed to match another material point.

Physical insight, familiarity with the uncertainty in the data set, and
engineering intuition guided the organization of the calculation process.
However, the actual process was carried out as systematically as possible.
The eventual creation of systematic and automatable methods to calculate
constants has been a major driver in this phase of the work. The method used
to calculate the material constants will be summarized using a generic
viscoplastic model in the first subsection of this section. The generic model
used as an example will be presented first followed by a subsection outlining
the general method of initial calculations and a subsection outlining the
iterative step.
Generic Viscoplastic Model

The growth laws for the example model are presented below:

5ol I
=C,é+CBe+C.B (21)
D =c,lel| +cpD (22)

n is a constant measuring strain rate sensitivity. (; is a constant measuring
back stress hardening. C2 is handling back stress dynamic recovery and C3
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measures back stress thermal recovery. C4 produces drag stress hardening and
Cg models drag stress recovery.
Initial Assumptions

The following initial assumptions were made in this work:

(1) back stress was assumed responsible for hardening in
monotonic tension;
(2) drag stress was assumed responsible for cyclic softening;
(3) thermal recovery was assumed negligible for rapid
tests (éIz 1.0X10’“sec'l] ;
(4) drag stress thermal recovery was present in Tow
 strain rate saturated cyclic tests; and
(5) back stress thermal recovery was present in creep tests.
These assumptions allowed the constants for the inelastic strain rate
equations, back stress hardening, drag stress hardening, drag stress recovery,
and back stress recovery to be calculated in that general order. These
assumptions also allowed much of the constant calculation schemes reported in
the literature to be utilized with this material [2,3,4,5,9,12,17,18].
The first step was to estimate the constants in the back stress growth
law assuming thermal recovery was negligible. The back stress growth law took
on the following form:

B=[c+BC,] & (23)

Differential techniques for calculating work hardening such as seen in Chan's
gamma and theta plot concepts [2] were useful. Experimental estimations of
back stress values such as used by Krieg, et al. [3] and Walker [12] were
usually necessary. Relationships between saturated stresses and saturated
back stresses as used by Miller [9] have also been used.

The next step was to calculate the strain rate sensitivity constant n and
the initial value of drag stress denoted by DO' Rewriting the inelastic
strain rate equation in the following form was useful:

1

(o -B)=—1n( &) +1n(D,) (24)

A linear fit to several data points typically provided 1/n as the slope and
In( Dy ) as the intercept. This is a technique commonly used with Bodner's
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model [19). The ability to estimate saturated stresses and back stresses
using techniques such as the gamma or theta plot [2] and relations between
saturated stress and back stress are useful [9,2].

Initial determination of the drag stress parameter C, was carried out by
assuming that thermal recovery could be neglected for rapid tests. The
cumulative inelastic strain was calculated at a point on the cyclic curve
where B and D could be estimated. The drag stress recovery parameter Cg was
then calculated by assuming the drag stress growth law was equal to zero for
the saturated cycle of a low strain rate test. The back stress recovery
parameter C3 was calculated by assuming the growth law for back stess was zero
for creep tests.

Computer Iterations

The computer fterations began by pairing each material constant with an
experimental stress-strain point which the constant should intuitively have
the greatest effect in predicting in a sequential fashion. The constants in
the generic model were paired in the following fashion for this work:

(1) Dy was paired with a stress-strain point at .8% strain on test 70

( & = 3.151x1073 sec™]);

(2) C, was paired with a stress-strain point at 1.3% strain on test 70;

(3) C; was used to assure that the theoretical back stress values were in

the same range expected from experimental values;

(4) n was paired with a stress-strain point at .8% strain on test 71 ( ¢ =

7.253x1076 sec71);

(5) C3 was paired with a point at 1.3% strain on test 71;

(6) C4 was paired with a point at .8% on the 10th cycle of test 86 ( ¢ =

1.002x1073 secly;

(7) Cg was paired with a point at .8% ot the 4th cycle of test 72 ( ¢ =

7.626X1070 sec'l);

The iterative procedure then progressed by numerically integrating the
model to predict the experimental stress-strain value for a specific
constant. The constant was altered to match this point while the others were
held constant. Then another constant was altered to produce the proper
prediction at its paired experimental point. The expected order with which
these steps were to be carried out is shown in Table 2. The x marks indicate
which constant is being altered during the step indicated in column 1. Steps
1 through 5 are setting the back stress hardening characteristics. Steps 6

263



through 9 are setting the strain rate sensitivity of the model. Steps 10
through 12 are setting the drag stress hardening constant. The back stress
recovery constants are being set in steps 13 through 15. Drag stress recovery
is set in steps 16 through 18.

Table 2 - An Example Set of Iterations

1 X
2 X
3 X
4 X
5 X
6 X
7 X
8 X
9 X
10 X
11 X
12 X
13 X
14 X
15 X
16 X
17 X
18 X

This method allows the entire process to be recorded. Automation of such
a method is also possible if the initial calculations produce values which are
close to the final constants. A systematic set of iterations may also allow a
standard method for calculating constants to be produced. The lack of
correction for strain ageing effects in the initial calculations caused
problems in implementing this iterative scheme. Reference [11] provides some
suggestions to avoid this as well as the specific application of this method
to the models used in this work. Table 3 gives the final values of the
constants with stress units of MPa, strain units of cm/cm, and time units of
sec.

MODEL RESULTS

The forms of the models to be covered in this section include Bodner's
model without a correction for solute strengthening, Bodner's model with a
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Table 3 - Final Constants for Models

Krieg, Swearengen and Rhode's Schmidt and Miller's
Model Model
Constant Final Value Constant Final Value
n 15.00 n 7.0
C (1/sec) 2.000E-4 Al (1/MPa) 1.451£-4
Al (MPa) 9,646 A2 (MPaE-3) .030572
A2 (1/(MPa sec)) 0.000 B' (1/sec) 1.5E6
A3 (MPat-2) 2.387E-5 C2 (MPa) -2.067E5
A4 (MPa) -3445 00 (MPa) .006890
A5 (MPaE(1-n)/sec) [ -1.137E-19 H1 (MPa) L4823
DO (MPa) 689.0 H2 (secE(1/n)) 1E-7
F (MPa) 379.0 F (MPa) .04823
B 1,000 8 3.5
J 7.000E-6 J 1£-9
Bodner's Anisotropic Walker's Exponential
Model Model
Constant Final Value Constant | New Value
n .8132 C 1.000E40
Al {1/sec) -.0010 D1 (MPa) 4,823
A2 (1/sec) 0.000 D2 (MPa) 2.067
Ml (1/MPa) .007257 n2 (MPa) 2.274E5
M2 (1/MPa) .05805 n3 750.0
rl .4926 nd -250.0
r2 .4926 nb .6600
70 (MPa) 6201 né 2.5E-4
21 (MPa) 4823 n/ 18.00
22 (MPa) 6201 RO 3.050E-5
723 (MPa) 2184
F (MPa) -2412
8 3.0
J 1.0E-6
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solute strengthening correction, the model of Krieg, et al. with and without a
correction for solute strengthening, Schmidt and Miller's model, and Walker's
exponential model. The models were numerically integrated with an Euler
forward integration scheme on a Perkin-Elmer 32-10 computer. The time steps
used ranged from 5.0X10"% sec for test 70 to 5.0x1072 sec for test 71.
Reproduction of Test Data

Fig. 2 shows the response of the models as compared to test 70 ( ¢ =

3.151X10‘3 sec'l). The models are all oversquare except for Walker's.
Walker's model is showing adverse effects from its dynamic recovery term as
the stress is decreasing at higher strain levels. This is more of a problem
with the method of constant calculation than the model itself. The iterative
portion of the constant calculation process was performed with access to only
two points on this curve. Using three points or interactive graphics would
have solved this problem.

Fig. 3 compares the model outputs to test 71 ( ¢ = 7.253%107° sec'l).
Walker's model is still following the shape of the curve best. The dynamic
recovery problem still exists with the Walker model. The Krieg, et al. model
is showing some numerical instability due to the presence of the
solute strengthening parameters. The uncorrected versions of Bodner and
Krieg, et al. are much lower than the other models. The Fso] parameter was
simply set to zero in these versions. The other constants remained the same
as in the corrected versions. Therefore, the reponse of the uncorrected
versions could have been averaged over the strain range better. However, the
basic strain rate sensitivity would have remained the same.

Fig. 4 interpolates the model response and experimental response between
these two strain rates presented above by picking off stress values at .8%
total strain for tests of intermediate strain rates and plotting these values
versus the log of the applied strain rate. The tests used in Fig. 2 and Fig.
3 are shown on this figure also. Walker's model is exhibiting negative strain
rate sensitivity and the corrected Bodner model is showing no strain rate
sensitivity. The other models clearly produce positive strain rate
sensitivity.

Fig. 5 shows the stress values at +.8% strain for the saturated cycle
response. The slowest strain rate provides data from the fourth cycle and the
other points are from the 10th cycle. The trend has changed and all the
models with correction for solute strengthening are exhibiting negative strain
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rate sensitivity. This is probably an effect of the drag stress thermal
recovery parameters and the cyclic work softening response.

Fig. 6 allows interpolation between the first cycle and the 10th cycle of
test 86 ( ¢ = 1.002x1073 sec'1 } by presenting the values at +.8% strain for
each cycle. The corrected Krieg, et al. model and the uncorrected Bodner
model reproduce this data closest. Fig. 7 provides the same data for test 80
(¢ = 9.926x10°5 sec~! ). This strain rate shows Walker's model following the
experiment the closest. The peak value at the second cycle is reproduced with
this model only. Fig. 8 presents the cyclic data for test 72 ( ¢ = 7.626X10'6
sec'1 ). The corrected Bodner model is following the data closest. The
Walker model is clearly suffering from the lTack of a drag stress thermal
recovery term.

Predictive Capabilities

The predictive capabilities of the models were explored by the use a
complex history test. This experimental test was not used in the calculation
of the material constants. Table 4 gives the input history of this test.
Fig. 9 through Fig. 14 show the comparison of the models to this complex
history test. The corrected Bodner model in Fig. 10 is the le .st affected by
strain rate jumps. Bodner attributes this to the use of plastic work as the
measure of work hardening [7]. The interaction of the solute: strengthening
corrections of all the models may be having an effect on this aspect of all
the models. The uncorrected versions in Fig. 9 and Fig. 11 are very
suseptible to these jumps. Yao and Krempl report that the overshoots and
undershoots observed during the strain rate jumps are a transient effect of
the behavior of a system of coupled nonlinear differential equations [20].

A comparison of the response of the corrected and uncorrected versions of
the Bodner and Krieg, et al. models at the zero strain hold time shows that
the F¢, 7 correction negates the effects of thermal recovery in such
instances. This could be a result of the low value of J or the inelastic
strain rate of maximum correction used in these models. The corrected Bodner
model had J = 1.0x1078 sec™!l, the mode) of Krieg, et al had J = 7.0X107®

sec™!, and Schmidt and Miller had J = 1.0X10 9sec™}. Schmidt and Miller's
model showed no thermal recovery at this hold either. The small inelastic
strain rates produced by thermal recovery terms would meet increasing hardness
if their magnitude was below J. Increasing hardness would tend to drive the
stresses up and oppose the action of the thermal recovery terms.
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Table 4 - Complex History Test Input

Interval | Beginning Strain | Ending Strain | Strain Rate | Time(sec)
1 0.0 .004 9.991E-5 40
2 .004 .006 4.784E-4 4
3 .006 .008 9.762E-4 2
4 .008 0 -5.0E-3 1.6
5 0 0 0.0 60
6 0 -.004 -9.878E-4 4
7 -.004 -.009 -9.795E-5 50
8 -.009 .006 9.933E-4 15
9 .006 008 9.532E-6 200

10 .008 .01 5.0E-3 .4
11 .01 .01 0 60
12 .01 .015 4.95E-4 10
13 .015 0 -1.4925E-3 15

The Walker model follows the shape of the stress strain curve better than
the other models. This could be a result of the better modelling of the back
stress growth and the lack of an inelastic strain rate exponent. The model of
Krieg, et al. had n = 15.0 and Schmidt and Miller had n = 7.0. The constant
values of work hardening have also been reported as reasons for this [3,21].
Bodner's model may be suffering from the lack of a back stress or the effects
of the plastic work measure of strain hardening. However, further study would
be required to show this. The corrected model of Krieg, et al. reproduces the
actual stress levels best after initial yield. No explanation can be given

for this at this time.

CONCLUSIONS AND RECOMMENDATIONS

Conclusions and Recommendations based on the Models

The theories of Walker and Bodner with exponentially based inelastic
strain rate equations and dynamic recovery terms handle the strain rate

sensitivity the best. Bodner's model shows less sensitivity to strain rate
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jumps possibly due to the plastic work rate measure of strain hardening. The
reproduction of the general shape using Walker's model may be aided by better
mode11ing of the back stress term and by the exponentially based inelastic
strain rate equation. The drag stress growth law of the Walker model provided
the closest fit to data over several cycles at higher strain rates. The
second cycle peak seen at the lower strain rates was modelled only by

Walker. Bodner's model handled cyclic response best over several cycles at
the lower strain rates due to the thermal recovery term. The solute
strengthening correction caused numerical instability, negating the effect of
thermal recovery during hold times and may have lessened the sensitivity to

strain rate jumps.
Future study of these models could take two directions. First, a

comparison to a material which does not exhibit strain ageing effects would be
beneficial. The corrections necessary to account for this phenomenon masked
some of the information which could have been obtained in this work. An
example of this is information about the effect of strain jumps on the
predictive capabilities of the models. The thermal recovery capabilities of
the models were also adversely affected by the strain ageing corrections. The
methods for calculating constants should be checked with a positive strain

rate sensitive material.
Second, further study which concentrates on the specific model form

should be carried out by the use of extended models. These would be models
extended from the existing ones. An example of this would be to replace the
inelastic strain measure of work hardening in the model of Krieg, et al. with
a measure based on plastic work. The inelastic work measure in Bodner's model
could be replaced with an inelastic strain measure. The extended models could
then provide true insight into the ramifications of using a measure of plastic

work. The effect of using an inelastic strain rate equation based on
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exponential, power law, and hyperbolic sine functions could be studied. The
advantages and disadvantages of providing a model with a back stress term
could be studied by providing the Bodner model with one as Moreno and Jordan
have done [22].

Conclusions and Recommendations based on the Calculation of Constants
The initial assumptions that back stress is responsible for hardening in

monotonic tension and drag stress is responsible for cyclic
hardening/softening appear to be good assumptions for this material system.
These assumptions were used for every model in the hand calculations and the
computer iterations with success. Krempl, McMahon, and Yao report that a
changing drag stress parameter alters the strain rate sensitivity of the model
[23]. This effect was not considered in this work and might warrant further
study. The initial assumptions that thermal recovery is negligible for rapid
tests (& > 1.0x10714 sec~1 ), drag stress recovery dominates in low strain
rate cyclic tests, and back stress recovery dominates in creep tests appear
difficult to apply in the presence of solute strengthening effects. This
material system requires that a correction for solute strengthening be
employed before recovery effects can be calculated. The recovery effects were
much smaller than the original hand calculations for the models of Krieg, et
al., Bodner, and Walker produced. This observation leads to the conclusion
that the recovery effects are largely insignificant for ¢ > 1.0X10'5 sec‘l.
Miller's model! requires the recovery terms to be much morve active than the

other models. This inflexibility gave some problems in the calculation of

Miller's constants.
The solute strengthening effects also masked the true strain rate

sensitivity of the material. Information on the strain rate sensitivity needs
to be obtained outside the region of solute strengthening effects. The

following initial assumptions would have been more appropriate based on these
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observations:

(1) back stress was assumed responsible for hardening in

monotonic tension;

(2) drag stress was assumed responsible for cyclic softening;

(3) thermal recovery effects were small and masked by solute
strengthening effects;

(4) solute strengthening or strain aging effects masked the

basic positive strain rate sensitivity of the material.

The model of Krieg et, al. was an easy model to work with since each term
in the growth laws could be scaled somewhat separately of the others. An
interesting observation of this model was that the constants of the inelastic
strain rate equation could be swept over a broad range but the monotonic
hardening remained relatively constant. There was also a mathematical
ambiguity between the constant C and the scaling of the drag stress. The
scaling could be transferred from one parameter to the other without any

visible change in model response.
Bodner's model "converged" to the final constants with fewer iterations

than the other models using the iterative scheme developed in this work. This
was probably due to the lack of a back stress parameter. A mathematical
ambiguity existed between n and the scaling of the internal state variables
when information was not available to calculate n. This is why a value for n

can often be picked and still1 produce a workable model.
Miller's model was highly coupled in that the recovery terms were not

separated from the hardening terms. The recovery terms can therefore change
the same order of magnitude as the hardening terms. Miller readily admits
that this model is designed for materials which have a very active drag stress
parameter [9]. He states that this model may not be applicable for this type

of material system. However, a reevaluation of the constants for Miller's
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model might prove fruitful. A majority of the constants should be calculated
outside the region of solute strengthening effects and without artificially
separating the hardening and recovery terms. A solute strengthening parameter
would then be added to fit the response to the negative strain rate sensitive

region.
Miller's model also maintains control over the saturated states of the

internal state variables B and D with the A; and A, constants. A correction
for strain ageing as well as cyclic work softening might be possible by
controlling these saturated states. A recommendation for further study based
on this model would contain an expanded study of back stress magnitudes over
the entire strain rate region considered. A possible method for this fis
disscussed in reference 11. The latest form of Miller's model [24] should

also be studied, as it may be used with material systems similar to this.
Walker's model holds promise for automating the calculation procedure for

this type of material. Walker's model has fewer constants, appears to be
tailored for this type of material, and can utilize the theta plot concept
[2]. The drag stress scaling performs the same strain rate sensitivity
functions as the n in the power law related models. Expanding knowledge of
the back stress values would also be useful for this model.

Conclusions and Recommendations Based on the Experimental Work
The back stress measuring tests both in creep and in cyclic loading were

very subjective and uncertain. However, their extreme usefulness and relative
success in application with an automated test set-up warrant further study.

It appears possible that these tests can be developed into useful inputs to
the constant calculation process. More sensitive data acquisition devises
with greater resolution and a smaller and less massive load frame for more
precise control would greatly enhance the usefulness of these tests. The

subjectivity could be lessened by using a method such as proposed by Blum and
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Finkel [14] to analyze the data.
The back stress measuring tests during creep were useful for strain rates

less than 1.0X10‘7 sec'l. The cyclic back stress measuring tests were useful
for strain rates greater than 1.0x1074 sec”l. The region between these two
tests could be filled by performing tests during monotonic tension such as the
stress transient test mentioned by Soloman, Alhquist and Nix [16]. This type
of test takes on greater usefulness for a material such as Inconel 718 which

exhibits good ductility in tension and high susceptibility to low cycle

fatigue.
An automated load frame was invaluable in this work for the complex

tests. A smaller load frame might provide more stability during highly
sensitive and mode-switching tests. A dead weight load frame would also be
useful for the creep and creep-stress drop tests. A more advanced and
controllable method of load-up would be a necessity. It would also be useful
to utilize the same grips, furnace, extensometer, and data aquisition
equipment as with the automated load frame. This would remove some relative

errors between the two systems.
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Stress (MPa)
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Fig. 2. Model Response as Compared to Test 70
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Stress (MPa)

TEST 71 -- STRAIN RATE = 7.253f-6/SEC
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Fig. 3. Model Response as Compared to Test 71
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TEST B9 -- COMPLEX INPUT HISTORY
BOONER MODEL (WITHOUT FSOL CORRECTION)
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Fig. 9. Complex History - Bodner's Uncorrected Model
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TEST B9 -- COMPLEX INPUT HISTORY
BODNER MODEL (WITH FSOL CDRRECTION)
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Fig. 10. Complex History - Bodner's Corrected Model
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Stress (MPa)
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TEST BS -- COMPLEX INPUT HISTORY
KRIEG MODEL {WITHOUT FSOL CORRECTIDN

1
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Fig. 11 Complex History - Uncorrected Model of Krieg, et al.
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TEST 83 ~-- COMPLEX INPUT HISTORY
---------- KRIEG MCDEL (WITH FSOL CORRECTION)
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Fig. 12. Complex History - Corrected Model of Krieg, et al.
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TEST B3 -- COMPLEX INPUT HISTDRY

.......... MILLER MODEL
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Fig. 13. Complex History - Schmidt and Miller's Model
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TEST B9 -- COMPLEX INPUT HISTORY

---------- WALKER MODEL
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Fig. 14. Complex History - Walker's Model
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THE EFFECTS OF TEMPERATURE AND STRAIN RATE ON
THE YIELDING BEHAVIOR OF THE SINGLE CRYSTAL SUPERALLOY PWA 1480

Walter W. Milligan and Stephen D. Antolovich
Fracture and Fatigue Research Laboratory
School of Materials Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0245

Recent advances in precision casting technigues and alloy
development have allowed the introduction of directionally
solidified and single crystalline turbine blades in aircraft gas
turbine engines and advanced rocket engines. Because these
alloys exhibit complex anisotropic elastic and plastic
properties, the conventional continuum-mechanical approach to
constitutive modelling is frequently inadeqguate. This has led
designers and analysts to try to understand fundamental
metallurgical deformation and damage mechanisms in these alloys,
and to incorporate some of these mechanisms in their models. The
goal of this project 1is to characterize these fundamental
mechanisms in the nickel-base superalloy PWA 1480, and to
interact with the mechanics-oriented analysts in an attempt to
develop physically-based constitutive models for this alloy.

In addition to the anisotropic elastic and plastic
properties which are inherent to a single crystal, nickel-base
superalloy single cyrstals also exhibit complex behavior due to
their miocrostructures. The alloys are strengthened by the
precipitation of the y' phase, and this phase is the dominant
microstructural feature (about 60 volume % of the alloy).
Because y' is an ordered phase, it shows an anomolous increase in
strength with temperature, and %lso exhibits very complicated
orientation-dependent behavior. (! Because the superalloy 1is
composed of 60% y', some of this behavior is also evident in the
superalloy. However, it must be stressed that the superalloy is
a composite structure, consisting of two phases. It is of the
highest importance to determine how dislocations interact with
the precipitates and with the matrix/precipitate interfaces
during deformation. These interactions are very dependent on
temperature, strain rate, and stress state.

The first phase of the poject has been completed.(z)
Interrupted tensile tests were conducted on <001> oriented single
crystals at temperatures from 20-1093°c, Two strain rates were
used, 0.5 and 50%/min. After the tests were conducted, the
deformation substructures were characterized by transmission
electron microscopy (TEM). Although the cyclic work has just
recently begun, the results to-date include some unexpected
deformation behavior. If these trends are also evident in the
cyclic testing, they will have strong implications for the
applicability of current constitutive models.
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Figure 1 is a summary of the yield strength data. It can be
seen that below 760°C, the strength is independent of temperature
and strain rate. Above 760°C, the strength becomes of function
of temperature and strain rate, due to the fact that the plastic
deformation in this regime is thermally activated. Frequently,
thermally activated processes can be characterized very well by
an Arrhenius-type relationship of the form:

o = A(exp[O/RT])

where Q = Activation energy
T = Temperature
R = Gas constant
A = Constant

Figure 2 is a plot of the data in this form. It is seen that the
data falls naturally into three temperature regimes. Analysis of
the deformation substructures resulted in the same three regimes,
and the boundaries of the regimes were the same. Reference (2)
should be consulted for details, but a short summary is presented
below.

At low temperatures, when the strength was independent of
temperature, slip was very crystallographic. Deformation
occurred by shearing of the y' on {111} planes. 1In this regime,
the crystallographic models which add plastic shear strains on
different systems (both inside and outside the y') would appear
to be generally applicable.

At high temperatures, where the activation energy for
yielding was independent of strain rate, slip was extremely
homogeneous. Additionally, the y' was not sheared during
deformation. The particles were by-passed by diffusion-
controlled climb. 1In this regime, the y' was not sheared, so the
crystallographic models which consider cube slip within the
precipitates would not be applicable.

Intermediate temperatures resulted in transitional behavior.

It must be stressed that the above discussion is limited to
deformation during the initial stages of a tensile test, and only
the {001} orientation was tested. Later in the program, cyclic
and off-axis studies will be conducted to see if the conclusions
are more general,
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1.1 INTRODUCTION

Various unified creep-plasticity constitutive models have been proposed
to account for time-dependent wsiaterial behavior and temperature affects
[1-6]. Material constants for the flow rule and the evolution equations are
generally determined from a number of material behavior experiments. Model
limitations may exist if material behavior predictions are considered outside
the temperature or st;ain rate regime where the material constants have been
established. New deformation mechanisms identified in deformation mechanism
maps [7] could dramatically affect material behavior, but they may not be
represented in the unified equations.

A constitutive model 1is needed that can account for relative rate
insensitive material béhavior obtained at 1low temperatures (plasticity
deformation mechanism) as well as highly rate sensitive material behavior
observed at high temperatures (power 1law creep and diffusional flow
deformation mechanisms). This is necessary to provide an accurate time-
dependent material model for a wide range of temperatures and strain rates.

A constitutive model with accurate rate and temperature predictive
capabilities could then be checked with critical thermo-mechanical loading

experiments. This is necessary to identify model capabilities and explore

model limitations.
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1.2 PURPOSE AND SCOPE
In this study:

(1) a unified model is presented for isothermal and thermo-mechanical
loading. Predictions are compared to experiments for a wide range of
temperatﬁres and strain rates.

(2) deformation mechanisms operative for the alloys considered are

incorporated into the constitutive equations.

2. THE CONSTITUTIVE EQUATIONS

The proposed wunified creep-plasticity model contains two state
variables. The state variable sgj is the deviatoric back stress. It is a
tensor that defines the center of the stress surface in deviatoric stress
space. The second state variable K is the drag stress. It is a scalar that
defines the radius of the stress surface in deviatoric stress space. In
general, the state variables will evolve throughout the deformation history
consistent with the Bailey-Orowan theory ([8,9]. The coupled differential

equations are

e L in, a
eiJ sU e” ij € )
(o] C

in_ ¢ [(sij ; Sij)] (545 - 549 (2)
h 45 (15 - S8y - 85

c _ 2 -in c

553N 5 e 343 (3)
K=he-re+ e% (4)
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where éij is the total strain rate, é?j is the elastic strain rate (determined

with Hook's law), é:g is the inelastic strain rate, éth is the thermal strain

rate, Gij is the Kronecker delta, Sij = °ij - %k 6ij/3 is the deviatoric
c _ . . . .

stress, Sij = aij i Gij/3 is .the deviatoric back stress, °ij is .the

stress, %55 is the back stress, ng is the deviatoric back stress rate, K is
the drag stress rate, T is the témperature rate, ha and hK are the hardening
functions, L and ry are the recovery functions, f is the flow rule function,

and ¢ is a temperature dependence term.

3. 1070 STEEL

A detailed systematic method has been established for determining the
material constants from experimental data [10]. Two different flow rules
shown in Fig. 1 are considered. Flow rule 1 is determined with plasticity
deformation mechanism material behavior only. Flow rule 2 is determined from
material behavior operating in the plasticity and power law creep deformation
mechanism regimes. The flow rules and evolution equation constants for 1070
steel are shown in Table 1.

Flow rule 1 provides accurate material response simulations when the
plasticity deformation mechanism is operative, but it is inaccurate for}s]ow
strain rate high temperature simulations when the power law creep deformation
mechanism is operative. In Fig. 2, 600°C material response experiments and
predictions with flow rule 1 are shown. For ¢ = 2.0e-3 sec~1 (plasticity),
the predicted response is accurate. For ¢ = A2.0e-6‘1 sec‘l, a different
mechanism is operative (power law creep), and the predicted stresses are
significantly higher than the experimental values. Deformation mechanisms
need to be incorporated into the flow rule and evolution equations to provide

accurate strain rate effects.
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Flow rule 2 accounts for the high strain rate sensitivity at higher
temperatures. In Fig. 3, stable 600°C experimental and predicted response is
shown. Accurate rate affects have been achieved. Through the flow rule and
evolution equations the model can account for these two deformation mechanisms
for a wide range of temperature and strain rates.

Thermo-mechanical total constraint material response is shown in Figs. 4
and 5. The mechanical strain is the sum of the elastic and inelastic strain
components. Cycle numbers are shown on the figures at the maximum stress
levels. These predictions are independent of the thermal experimental
response and provide a good check for the constitutive model. For the thermo-
mechanical response, plasticity (low temperature end) and power law creep
(high temperature end) are both activated during a cycle. Predictions compare

favorably with experiments.

4. CONCLUSIONS AND FUTURE WORK

An experimentally based unified creep-plasticity constitutive model has
been implemented for 1070 steel. Accurate rate and temperature affects have
been obtained for isothermal and thermo-mechanical loading by incorporating
deformation mechanisms into the constitutive equations in a simple way.

Further work on low temperature material behavior for 1070 steel (T <
400°C) and on different materials is presently being considered. Preliminary
work on 304 stainless steel and nickel alloys show the model applicability to

a variety of engineering materials.

298



10.

REFERENCES

Miller, A., "An Inelastic Constitutive Model for Monotonic, Cyclic, and
Creep Deformation: Part I and Part II," J. of Engineering Materijals and
Technology, Vol. 98, pp. 97-113, April 1976.

Bodner, S. R., and Merzer, A., "Viscoplastic Constitutive Equations for
Copper with Strain Rate History and Temperature Effects," J. of
Engineering Materials and Technology, Vol. 100, pp. 388-394, 1978.

Walker, K. P., "Research and Development Program for Non-Linear Structural
Modelling with  Advanced Time-Temperature Dependent Constitutive
Relationships," PWA-5700-S0, United Technologies Research Center, (also
NASA CR-165533), 1981.

Robinson, D. N., and Swindeman, R. W., "Unified Creep-Plasticity Con-
stitutive Equations for 2-1/4 Cr-1 Mo Steel at Elevated Temperature,"
ORNL/TM-8444, October 1982.

Abrahamson, T. E., "Modeling the Behavior of Type 304 Stainless Steel with
a Unified Creep- P]ast1c1ty Theory," Ph.D. Thesis, University of Illinois
at Urbana-Champaign, 1983.

Slavik, D. C., and Sehitoglu, H., "Constitutive Models Suitable for
Thermal Loading," 'to appear in J. of Engineering Materials . ad Technology,
1986.

Frost, H. J., and Ashby, M. F., Deformation-Mechanism Map., The Plasticity
and Creep of Metals and Ceramics, Pergamon Press, 1982.

Bailey, R. W., "Note on the Softening of Strain Hardening Metals and It's
Relation to Creep," J. of Institute of Metals, Vol. 35, pp. 27-40, 1926.

Orowan, E. J., "The Creep of Metals," West Scotland Iron and Steel
Institute, Vol. 54, pp. 45-53, 1946.

Slavik, D. C., "A Unified Creep-Plasticity Model for Thermal Loading,"
Master of Science Thesis, University of I1linois at Urbana-Champaign,
1986.

299



Table 1 1070 Steel Material

Constitutive Functions

dth o gt
(S, .- SS.) a
Fl——1 = A /K"

where A = A' exp [-aH/RT]

-_,3 c o

ij
a-ba for sS. ¢, ¢
ij <. .
h o = { H
@ c -in
a for S:. ¢ <0
ij ij
— _,3.C C, 172
r = c(a/a*)?
where ¢ = ¢' exp [-G/RT]
hK = 0, re = 0
E'—'el—eZT
KO = hl - h2 T
o = -h,
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Constitutive Constants

Flow Rule #1
n=27.9

Flow Rule #2

for o/K <1, n =

for o/K > 1, n =
8 =1.7 x 10795
A' = 4.0 x 109 sec”!
aH = 210.6 KJ/mole

= 40000 MPa

= 100
a* = 100 MPa
d = 3.2
¢'  =5.0 x 1014 sec-l
G = 248.4 KJ/mole

For T < 713 K (4400C)

e 210710 MPa,
h1 273.6 MPa,

For T > 713 K (440°C)

385260 MPa,
501.3 MPa,

€
hy

5.4
27.9

31.0 MPa/K
0.04 MPa/K

275.7 MPa/K
0.32 MPa/K
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Figure 1 1070 Steel Flow Rule (400°C - 700°C)
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1. INTRODUCTION

There has been a great deal of research work in modeling the inelastic
deformation behavior of materials at the elevated temperature environment.
[t appears that a unified approach in the form of viscoplastic relations has
been most popular for prediction of material responses. In this context, a
number of viscoplastic material models have been published in the literature
[e.g. 1-6]. The unified approach differs from the conventional creep and
plasticity theory in that both the creep and plastic deformations, or alter-
nately termed inelastic deformations, are treated as time-dependent quanti-
ties. Based on the experimental and theoretical studies performed by vari-
ous investigators [3,4,7-9], it is known that viscoplastic constitutive re-
lations, in principle, are capable of predicting material responses at high
temperatures such as cyclic plasticity, rate sensitivity, long-term creep
deformations, strain-hardening or softening, etc. The degree of success of
a constitutive relationship varies depending on the extent of parameters
considered in or mathematical sophistication of a specific model,

Although most of viscoplastic models give improved material response
predictions over the classical approach, the associated constitutive differ-
ential equations have stiff regimes which present numerical difficulties in
time-dependent structural analysis. The numerical difficulty is indeed an
important concern when the viscoplastic relations are applied to large scale

finite element structural analysis.
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In finite element analysis for viscoplastic materials, two issues of
primary concern in connection with the associated material nonlinearity:
1) solution convergence in solving the global (incremental) equilibrium
equations, 2) integration of the constitutive rate equations at the local
material points (or element integration points). Numerically, these two
issues are inter-related. On the one hand, global equilibrium can not be
achieved if the stresses calculated at local material points are grossly
inaccurate. On the other hand, the constitutive relations and stresses are
not representative to the material if the strains computed from the nodal
displacements are in error.

In view of the above discussion, we have therefore investigated a com-
bined global/local incrementing scheme for the finite element analysis of

viscoplastic materials.

2. GLOBAL INCREMENTING

Due to the material nonlinearity, a viscoplastic problem is effectively
formulated by an incremental approach, in which the finite element equili-
brium equations can be linearized. In order to solve these equations suc-
cessfully, the analyst must be able to specify "appropriate" load steps.

If the loading increments are too large, the solution may not converge, or
it is far from being accurate. Alternatively, if the loading increments are
very small, the computation cost will become prohibitively high. Therefore,
it is desirable to implement an automatic incrementing procedure in which
the selection of (global) load steps can be made by the program, rather than
the analyst.

Use of automatic load stepping for solving nonlinear problems is not

new and most of the applications were concentrated at time independent
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problems [10-11]. Herein, we adopted similar concepts for the solution of

time dependent viscoplastic problems. The procedure involves two major

steps: 1) initiation of incremental solution, and 2) selection of subsequent

load increments. Each of the two steps is briefly outlined below.

(1)

Initiation of incremental solution - the solution begins with a speci-

fied load vector, i.e.

Ri =a - R (1)
where a = a load factor, < 1.
R = a reference load vector.

With the above load vector, solution will proceed with equilibrium
iterations. When the number of iterations reaches four and the solu-
tion has not yet converged, an estimate is made to project the number

of iterations required according to

n =1+ 4n{DTOL/d;)/(en dj - &n dj-1) (2)
where i = number of iterations already performed.
DTOL = iteration tolerance for displacements,
d; = ratio between the incremental displacement norm of

the i-th iteration and total displacement norm.

[ aU; [ /] Ui |

If n is greater than a maximum number of iteration cycles allowed, then

a new load vector is set to be R?EW = TRy, <l.
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(2) Subsequent load increments - The load increments, subsequent to the
first step, are determined on the basis of a constant arc length

method [12-14]. In this method, let the current load vector be
Ri+1 = A+1 R (3)

where Aj+¢] = a load parameter corresponding to the (i+l)-th iteration

=X +d A+l (4)
and d Aj+] is calculated from a quadratic algebraic equations [13].

3. LOCAL INCREMENTING

Once the global load increment is determined from the method outlined
in the above, a sub-incrementing method is incorporated at the material
point level to integrate the rate constitutive equation. For the purpose of

discussion, the viscoplastic constitutive equations are written in the form

y=fyt) (5)

where y represents the vector of stress, inelastic strain and state vari-

ables, and ﬁ is a vector of nonlinear functions. To integrate the preceding

equations, we have developed an automatic procedure based on the variable-

step Runge-Kutta (R-K) method. In this method, the global time increment at

is divided into a number of sub-increments, i.e. h = at/n. Corresponding to

h, the vector y for iteration (i+l) is evaluated by the 4th order and 5th
(5)

4
order R-K formulas, respectively, i.e. y§+{ and yj+]1. Then an error can be

estimated from

5 4
Est = || !$+{ - Z$+% [1/h (6)
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The calculated error must be within the following tolerance

Est < e || yij [/ at (7)
If the above condition is violated, a revised sub-increment h' is then
obtained from

h' =1t h

1
syl e
The foregoing procedure is repeated until the criterion in Eq. (7) is

satisfied.

4, NUMERICAL EXAMPLE

Several problems have been analyzed using the procedure outlined in
the preceding sections. Presented herein is a thick walled cylinder sub-
jected to an internal pressure, varying linearly from O to 14.6 psi for
t € [0,40sec.] The cylinder material is assumed to be 2-1/4 Cr-Mo common
steel at 811° k and Robinson's viscoplastic model is adopted. For finite
element analysis, five 4-noded axisymmetric elements are used.
The analysis was performed by using four different combinations of
numerical algorithms:
1) Automatic global and local incrementing (G + L)
2) Automatic global incrementing (G) with constant local steps
h = At/ng, ng = 2,4, and 8

3) Automatic local sub-incrementing (L) with constant global steps,
N =5, 10, 16, and 20.

4) Constant global and local steps.

Summarized in Table 1 are the algorithm details, CPU time on IBM-3033 com-
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puter, and radial displacement at the outer surface of the cylinder. It is
seen that with the automatic global/local incrementing algorithm, the lowest
CPU time was consumed. Convergence difficulty was experienced if only the
automatic global or local incrementing scheme was optioned unless the number
of solution steps or the number of sub-increments is significantly in-
creased. Shown in Figure 1 is the load vs. radial displacement at the outer
surface of the cylinder calculated from two different algorithms, i.e. auto-
matic global/local incrementing and constant global stepping with automatic

local incrementing. Both algorithms gave almost identical results.

5. CONCLUSION

Presented in this paper is a global/local time incrementing scheme for
viscoplastic analysis of structures. The scheme is very efficient and use-
ful for conducting large scale nonlinear finite element analysis involving

viscoplastic materials.
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Table 1 A COMPARISON OF DIFFERENT SOLUTION ALGORITHMS
FOR A THICK-WALLED CYLINDER

Case Option Global Local cPU Ugl0-2
No. Steps Substeps Unit ?nch
1 G+ 1L 16 -- 11 0.1851
2A G 16 8 100 0.1851
28 LR 16 4 57 0.1851
2C /G -- 2 solution diverged, (note 5)
3A L 20 -- 35 0.1851
3B L 16 -- 36 0.1856
3C L 10 -- 45 0.1879
3D L 5 -- solution diverged, (note 6)
4A N 20 4 37 0.1851
4B N 20 2 solution diverged, (note 5)
Note:
1. G+L - both global and local automatic incrementing.
2. L - local automatic incrementing only.
3. G - global automatic incrementing only.
4. N - manual incrementing

5. In cases 2C and 4B, solution diverged at steps 6 and 3, respectively,
because the values of material state variables are out of bound.

6. In case 3D, solution diverged at step 5 because out-of-balance load
was greater than incremental load.

7. Uy s the radial displacement at outer surface of the cylinder.
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An automated procedure 1is presented for evaluating the material
parameters in Walker's exponential viscoplastic constitutive model for metals
at elevated temperature. Both physical and numerical approximations are
utilized to compute the constants for Inconel 718 at 1100°F. When
intermediate results are carefully scrutinized and engineering judgement
applied, parameters may be computed which yield stress output histories that
are in agreement with experimental results. A qualitative assessment of the

g-plot method for predicting the 1limiting value of stress 1is also
presented. The procedure may also be used as a basis to develop evaluation

schemes for other viscoplastic constitutive theories of this type.
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INTRODUCTION

A large number of unified viscoplastic theories are currently being
developed for metals|[l]. These models generally. require the evaluation of
numerous material parameters before they can be utilized. These constants are
highly coupled to one another, and, due to the nonlinearity and stiffness of
the governing equations, they are difficult to evaluate. The evaluation of
these parameters 1is normally accomplished in a heuristic way due to the
complexity of the models, so that the values of the constants are dependent on
the person evaluating them. The purpose of this research was to develop an
automated procedure for the evaluation of material parameters utilized in
Walker's exponential viscoplastic constitutive model for metals at elevated
temperature{2,3]. The procedure developed herein entails a synthesis 'of
physical and numerical approximations which use various combinations of
experimental data, as well as engineering intuition to determine the
constants. The 1impetus for this work was two-fold. First, automated
procedures for determining the material parameters are needed if standardized
material parameters are ever to be realized. Second, in order to improve the
present theories, a thorough understanding of the approximations and/or
assumptions made during their development and subsequent usage is required.

While the model developed by Walker is only one of many currently being
used, similarities are notable in a number of other theories such as those
proposed by Krieg, Swearengen, and Rhode[4], Bodner[3], and Schmidt and
Miller[5]. Therefore, it is believed by these authors that the general
procedure presented herein may be applied to other models such as those

ment ioned above.
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THE MODEL
The model proposed by Walker is a viscoplastic theory which uses a flow
law for the inelastic strain rate, which is an exponential in stress. The
growth law modeling back stress is of the hafdening/recovery form and accounts
for both dynamic and static thermal recovery. The drag stress term models
isotropic hardening, thus accounting for the cyclic hardening or softening
characteristics of metals. The uniaxial differential form of Walker's

exponential model may be written as:

1 e -1

e = 2 sgn(o - B) , | (1)
B = nQéI - Btln, + n, exp(-nsllog(—g—)ll R+ ngl, (2)
D =D, - D, exp(-n,R) , Ro (3)
: y

R =le |, (4)

where o is the applied stress, eI is the inelastic strain, B 1is the back
stress, and D is the drag stress. A superposed dot above the variables
denotes differentiation with respect to time. The material parameters for
this model are 8, n,, n;, n,, n, n,, n,, 0, and D, . Therefore, nine
constants need to be evaluated, in addition to Young's Modulus E and the
strain aging parameter R, . These same constants are required for the
multiaxial formulation, in addition to Poisson's ratio.

The experiments required to determine the constants for Walker's model
using the procedure developed herein include: 1) A series of constant strain
rate steady state hysteresis lcops under fully reversed strain controlled
conditions (Fig. 1); 2) cyclic hold tests performed on the unloading branch of

the cyclic tests (Fig.2); and 3) long term monotonic tension tests (Fig. 3).
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The cyclic hold tests are used to measure the back stress and are performed by
cycling a material until saturated conditions are reached. Hold times are
then inserted at various points in the unioading region as shown in Fig. 2.
If the test frame is in load control, then the back stress is equal to the
applied stress when no creep is observed for a given ho]d time.

The monotonic tension and cyclic hold tests are used to evaluate the
material parameters found in the inelastic strain rate equation and the back
stress growth law, whereas the cyciic hysteresis tests are used primarily to
obtain constants for the isotropic hardening variable. The monotonic tests
may not be necessary if acceptable values of the limiting stress (°]im) can be
obtained from the first half cycle of the cyclic tests. The aforementioned
experiments were performed on Inconel 718 at 1100° F. A complete description

of the test procedures and results may be found in reference [6].

DETERMINATION OF THE CONSTANTS

The procedure for determining the material parameters in Walker's theory
is described in the ensuing paragraphs. The equations, which are a result of
both physical and numerical approximations, can be coalesced into a single
interactive computer code. Since approximations are made, from time to time
the user may have to judiciously select some constants in order to complete
the constant calculation process. The reason for this can be an insufficient
data base, poor experimental results, or a material response that the model
cannot handle.

Evaluation of the material parameters begins by plotting oqim VErsus
In (EI) . A nonlinear representation signifies that strain aging and/or
thermal recovery effects are present and thus need to be modeled. If 1im is

not obtained experimentally, it can be estimated in a manner similar to that
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proposed by Lindholm, et al.[2].

If %1im is to be estimated, then under conditions of uniaxial tension
loading, when éI is assumed to be a constant and equal to the applied strain
rate and exp( °BB ) > 1 ,eq. (1) may be written as:

o=01n (gl) +B . (5)

Using the evolution equation defining the back stress (eq. (2)) and the
assumption that D remains constant during monotonic loading,

then do/deI (or o) may be written as:

o =n, - gln, + nexp(-n, [1og ()] + nyrel] . (6)

R,

Thus, equations (5) and (6) can be combined, yielding

-No + [n, + NDIn(a: )] , (7)

[0}
[}

where

N =n, +n, exp(-n|log(—=)[) + n,/il . (8)
R

0

Therefore, equation (7) indicates that a plot of o versus o should be linear
at low inelastic strains, having a slope of N and an x-intercept of °1im
The 6- plot is obtained by plotting stress versus inelastic strain (as shown

th order polynomial. This

in Fig. 4(a)) to find o(el), which in general is a n
function is then numerically differentiated and plotted versus stress to

produce the o- plot (see Fig. 4(b)). Hence, values of N and oy 4p Can be
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obtained for each monotonic tension test using a linear regression scheme. If
acceptable values of o14m 8re obtained experimentally, the e- plot may still
be used to determine N. In this situation, the 1inear fit results in a slope
which is forced to pass through °1im *
The constant n, is computed by determining where the effect of strain
aging is considered negligible and may be written as:
R,
n, = -[1n(x)/|log (—)|1 . 9)
R

0

The constants éo and él represent the strain rate at which the strain aging
correction is a maximum and minimum, respectively, and t denotes the residual
correction at rate él . It should be noted that t also affects the rate of
decay of the strain aging correction and selection of too small a value will
result in a very localized correction.

The next step in this procedure is to compute the dynamic and static
thermal recovery constants n,, n_, and ng using equation (8). Assuming that a
1imiting value of stress has been obtained, then é=éI and eq. (8) can be
written a number of times, corresponding to the different monotonic tests

(denoted by the subscript i) as:

-1
Ni =n, + ani + nﬁ/ei . (10)
where
Ry
f'i = exP(‘nsllog (—‘—)l) . (11)
R

0

Thus, the three parameters n,, n , and n, may be obtained simultaneously
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using a multiple linear regression scheme. A plot of this curve fit will
indicate if acceptable values of the dynamic and thermal recovery parameters
have been found. In the event that poor results are obtained (as shown in
Fig.5) , one of the following actions can be taken: 1) The data base can be
scrutinized more carefully, using additional tests to capture the desired
effect or deleting tests that do not appear consistent; 2) values of
n,, n,,and n, can be assigned using engineering intuition; or 3) an
uncoupled method (to be discussed below) for evaluating the constants can be

used.
The uncoupled formulation assumes that thermal recovery effects can be

neglected for high strain rate tests. Thus, eq. (10) may be written as:
N.=n+n f. . (12)

Therefore, n, and n, can be computed by a linear least squares algorithm
where n, 1is the intercept and n, is the slope (see Fig. 5). If this
method is wused, the constant n, should be initially set to zero and
determined later in the procedure.
The hardening coefficient n, is computed on the basis that B saturates to
B]im at large inelastic strains. Hence, é=0 and equation (2) reduces to
n2

B,. = - . (13)
Him n, + nf + n6/cI

If it dis assumed that the ratio °exp/Bexp will remain constant for the

limiting condition at sufficiently large inelastic strains, then

[o] s
e ol (14)
exp 1im
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Substituting eq. (13) into (14) and solving for n, results in

-1
(n. + nf +n./¢ log, B
n, = 3 b 6 lim  “exp , (15)
%exp %exp

where o1 im values are obtained from long term monotonic tension tests

or o-plots and B__ / values come from cyclic hold tests. The final value

exp’ exp
of the hardening coefficient is then computed as the arithmetic mean of the
number of experiments. If an acceptable value of n, is not obtained, it can
be specified, noting that this parameter effects the rate of hardening.
The initial value of drag stress D, and the inelastic strain rate
scalar g are determined by rewriting equation (15) using the limiting values
of o and B as:

- Byin = Do1n(él) + D, In(s) . (16)

MVim ]

Since By;, 1s given by equation (13), it can be substituted into equation

(16), resulting in

n,

-1
8§ p = Oqs - — = D,In(e”) + D, 1n(8) . (17)
9B = CVim T Tt e nsil 0

Equation (17) indicates that a plot of 6 g Versus 1n(él) should be linear
(the piecewise curve shown in Ffig. 6 is an artifact of the strain aging
correction in the dynamic recovery term of the back stress evolution
equation), having a slope of D, and an intercept of D In(8) which are obtained

from a linear regression analysis. Hence, g8 can be computed directly once the
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value of the intercept is known.

If thermal recovery effects were previously neglected, the
constant n. can now be evaluated. Since B8 and 0,, n,, n,, and n, are known,
eq. (13) can be substituted into eq. (16) yielding an expression for n. :

B -, In(eeH)l - n, - nfy (18)

n, = 4

6 {n, o

1im
The thermal recovery parameter is then computed for a number of low strain
rate monotonic tension tests and averaged.

Up to this point, the only tests that are needed in order to compute the
material parameters are monotonic tension and cyclic hold tests. To obtain
the isotropic hardening and recovery constants D0,, 0,, and n,, saturated
cyclic hysteresis data are required. By estimating the cumulative inelastic
strain from applied stress, strain amplitude, and E, in addition to assuming

that D saturates to D, , then n, can be approximated by:

n, = -1n(T)/Rdvg . (19)

where Rav is the average of R for a number of tests and + is a number

g
approaching zero.

On the physical basis that B saturates much more rapidly than D, equation

(5) can be written as:

Oqys. - B,
_ _lim 1im
DHm =0, = (20)

ln(BéI)

where
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B]im =n,/N . (21)
The values of oyip and N in equations (20) and (21) are estimated from
the o-plot using data from the tension half-cycle after cyclic saturation has
occurred. If several tests are used, D, is computed as the arithmetic mean.
The final parameter to be determined is D, . When R=0 equation (3)

reduces to
p - Dy (22)

from which D, may be computed directly, completing the constant calculation
procedure.

The primary equations used in the procedure described above are
summerized below and a flow chart of the associated computer code is shown in
Fig. 7. The program is written to compute the constants in a totally
automated fashion or, alternately, the parameters can be modified and/or
recomputed through user intervention. While the flow chart depicts the
procedure as a sequential series of evaluations, the user may alter the
program flow to iterate on a specific constant or series of constants.

1) Values of 9,;y @nd N from monotonic tension tests
are computed using equation (7) and a least
squares procedure.

2) After selecting R,, R, and v, n, is evaluated

0’
using equation (9).

3) The parameters n,, n , and n, are determined, in a
coupled formulation, by equations. (10) and (11)

using a multiple linear regression scheme, or
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alternately, using an uncoupled formulation by
equations (12) and (18).

4) The back stress hardening coefficient n, is
computed directly from equation (15).

5) The constants D, and g are  evaluated using
equation (17) via a least squares procedure.

6) After computing the cumulative inelastic strain
from the experimental data, n, is evaluated
directly from equation (19).

7) D, and D, are computed using equation (20) and

(22).

DISCUSSION OF THE PROCEDURE AND RESULTS

The parameter evaluation program, described in the previous section, does
not require an entire experimental data base. Instead, summary information
which is composed of both measured quantities and pre-processed values is all
that is necessary. Data tabulated from fully reversed cyclic tests, cyclic
hold tests and long term monotonic tension tests on Inconel 718 at 1100° f may
be found in Table 1. These data were used to compute an initial set of
constants (see Table 2) in a totally automated fashion. Comparisons between
Walker's exponential model and several tension experiments may be seen in
Fig.'s 8-10. It is apparent that the initial set of parameters did not enable
the model to capture the true response of the material. Therefore, a critical
review of both the procedure and experimental data was necessary.

For the purpose of this discussion, it was assumed that the data base

accurately represented the material behavior. Therefore, steps in the
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procedure which require user interpretation were examined first and the
following observations were made.

When constructing the e-plot, there are several points to consider.
First, proper evaluation of °1im and N require that eI be computed
after él becomes constant. This is generally assumed to occur at the 0.2%
offset yield stress. However, if this is not true, the computed value of N
will be too large, which in turn will yield a value of °yim that is too low.
A second area of interest is in the differentiation of the o versus

eI curve. Usually the stress is expressed as an nth order polynomial
function of the inelastic strain. However, depending upon the viscoplastic
model and material system, a logarithmic, power law or exponential curve fit
may be more suitable. In addition, a finite difference approximation can be
used, thus eliminating the curve fitting requirement altogether. Since a poor
curve fit will yield a s-plot that is difficult to interpret, care should be
taken in selecting the proper form of the equation. Lastly, one needs to
consider the strain amplitude necessary to obtain an accurate prediction of
Nim *

The e-plots for the material system considered herein were constructed
using a combination of third and fourth order polynominal curve fits (see Fig.
4). Figure 11 shows that the values of N are scattered and have no specific
trends when they are plotted against in(¢). In a similar fashion, Fig. 12
shows anomalies in the prediction of 1 im While the sigmoidal shape of the
curve was expected, the large discrepancies make interpretation difficult.

To illustrate how scatter such as that depicted in Fig.'s 11 and 12 can
occur, consider the following points. First, Fig. 13 shows a e-plot

constructed using a fourth order polynomial curve fit, evaluating o(el) over

various strain amplitudes. While there 1is only a 6% change in
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predicted Nim® there is over a 50% change in N. Some of the discrepancy can
be attributed to the fact that él was not constant. In addition, the order of
the curve fit drastically changed the shape of the e-plot making
interpretation difficuit . Second, Fig. 14 shows a e-plot generated from a

logarithmic curve fit. While not shown, evaluation of o and N. over

Tim
different strain amplitudes did not adversely affect their values. Finally,
Fig. 15 depicts a e-plot constructed using finite differences. It is apparent
that numerical differentiation by this method yields unacceptable results. In
summary, one must carefully consider both the constitutive model and material
system before selecting the type of curve fit that will be used in the
construction of the e-plot.

It was also determined that the mulitiple linear regression scheme used to
compute dynamic and static thermal recovery constants in a coupled fashion did
not work well when the material exhibited substantial strain aging. Therefore,
by neglecting thermal recovery, n3 and n, were computed using an uncoupled
procedure. Figures 8 through 10 show that Walker's model, using the final
parameters (see Table 2), was able to reproduce the input data fairly well
except in the initial yield region. Test 80 showed the largest deviation
between actual and predicted stress, underestimating it by 6% at a strain
amplitude of 0.8%.

Figures 16 through 18 show the model behavior for the last cycle of
several cyclic hysteresis tests. Figures 17 and 18 indicate that the computed
value of D, was too large, which resulted in an excess of material softening
under cyclic loading. However, the opposite trend can be seen in Fig. 16
(test 86 was the fastest cyclic test run), wherein the peak stress amplitude
was overpredicted. A review of the monotonic tension data reveals the same

tendency. This would lead to the conclusion that the full effect of the
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strain aging correction was not captured.

A complex history test (one which was not used to evaluate the constants)
was used to show the predictive capabilities of Walker's model using the final
set of parameters. In general, fig. 19 indicates the numerical simulation
matches the test fairly well. The only major problem encountered was a 7.5%

overprediction in stress at large strain amplitudes.

CONCLUSIONS
A method for obtaining the material parameters for Walker's model has
been developed which is a synthesis of both physical and numerical
approximations. The associated computer algorithm allows the user to specify
either a totally automated procedure or engineering intuition at selected
points when computing constants. In addition, qualitative assessments were

made regarding the use of the e-plot in determining o and N. It was noted

that the method of differentiating the o versus eI curve depends on both the

lim

constitutive model being used and the material system.

Walker's viscoplastic constitutive model for metals at elevated
temperature was compared to experiment results for Inconel 718 at 1100°F.
This material system responds with apparent strain aging, undergoes cyclic
work softening, and is susceptible to low cycle fatigue. It was shown that
Walker's model was able to capture the response of the material. It has also
been shown that the use of the linearized equations can lead to unacceptable
simulations if care is not used to interpret the results. The procedure
yie]ds initial values for the constants which may then be used in an iterative

scheme to arrive at the final parameters.
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Figure 1. Cyclic Hysteresis Test
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Figure 2.

Cyclic Hysteresis Test with Hold Times
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Figure 3. Long Term Monotonic Tension Test
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O(EI) Polynomial function dotain via a least squares
curve fit I
£

Figure 4(a). Stress versus inelastic strain

\

Figure 4(b). Typical O-plot
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computed Ny

1 1 'l 1 s i

1n(€)
® values of N obtained from the O-plots

n3, n,, and n. obtained simultaneously
using a multiple linear regression scheme

- o -

ng and n, computed using a linear
regression scheme

Figure 5. Least squares fit of N as a function
¢I (note: the abscissa is shown as

In(¢) instead of € for pictorial
purposes only)

336



1 1 - 1 1

1n(€)

Data to be fit

--~- Result of linear regression analysis

Figure 6. Least squares fit of Jgp as a function
ln(él)
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Figure 7. Flowchart of Walker's Procedure
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E 1S
ORIGINAL P{?ﬁﬁm
g)!& ]1()()]&. Cl
Test No.
? £ ¢ °-xp °un cy “up N k
1| 70 | 3.1six10” 132.527 | 97.83 287,253
2 86 | 1.002x107" 120.938 | 91.677 307.181
3 56 | 9.966x10"" 118.217 | 95.575 305,436
o a 35 | 9.235m107" 136.3 2.2
] s 37 6.948<107" 132,58 246.9
6 65 3.127x107" 134.143 | 97.84 268.17
7 39 1.793x107° 130.6 206.61
8 83 | 9.9260107° 134.536 | 94.56 337,399
| 9 34 | 7.637x107° 182.1 119.8
| 10 36 | 5.703x10°° 138.5 241.6
1 g0 | 3.054x10”" 141.821 | 100.941 310,777
o 12 az | 1.91ax10”’ 137.6 291.8
| 13 38 | 1.410x107° 140.7 212.4
14 72 | 7.6260007" 138.155 | 101.71 358.549
15 7n | 7.25m10°° 135.584 | 97.67 342,254
«| 16 a0 | 7.029x10"" 138.3 328.5
17 84 | 2.612x107 | 116.48 | 13z.527 68.3
18 88 | 9.272x10"" | 100.98 | 120.938 62.47
19 g8 | g9.z7ax10™" | 100.98 | 18.217 62.47
20 Bl | s8.635x10"" | 116.45 | 120.938 64.65
21 81 | B.635x107" | 116.45 | 118.217 64.65
22 &5 2.75!:10-“ 107.84 134,143 80.00
23 86 | 1.002x107° 108.326 288.42 0.0773
24 56 | 9.966x107 105.897 294.58 0.0799
25 65 3.12710”" 121.427 248.02 0.0707
26 83 | 9.926x10"° 136.693 267.179 | 0.0293
27 80 3.05'5)«]0's 135.899 255.534 0.0578
28 72 7.262x10°° 135.38 75,035 | 0.0205

®» Dif ferent Material Svstem

Table 1. Input Data for Parameter Evaluation
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Initial Final

Parameters Values Values

B (sec) 0.288E34 0.280E70
Dy (ksi) 0.580£00 0.520E00
Dy (ksi) -0.000E00 -0.120E00
éé in/in/sec 0.454E-4 0.454E-4
E (ksi) 0.247E05 0.247t05
no (ksi) 0.264E05 0.140E05
n3 0.370E03 0.390E03
ng -0.200E03 -0.200E03
ng 0.530E00 0.103E01
ng (/sec) 0.400E-4 0.400D-4
ny (/sec) 0.179E02 0.179E02

Table 2. Parameters for Walker's model
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Stress (KSI)

TEST 70 -- STRAIN RATE = 3.1E51€-3/5EC
---------- WRLKER MODEL (FIMAL PRRAMETERS)
- - -~ WALKER MODEL (IN!TIAL PARAMETERS)

150.0 T 1 T 1 T T T T ! I Y T !
125.Cp= -
100.0 p= -
P -
- -
75.0p=
. m
50.0 F— -
= -
25-0 fu— —
0.0 ’ t | 1 | | ] 1 | | ] 1 ] 1
0.0 .002 .004 .006 .008 .010 012 .14

Strain (in/in)
Figure 8. Comparison of Walker's model with initial and
final parameters to Test 70-a long term
monotonic tension test.
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Stress (KSI)

TEST 80 -- STRAIN RRTE = 3.054F-5/SEC
---------- WALKER MODEL (FINAL FARRMETERS)
- == - WALKER MDODEL [INITIAL PARAMETERS)

150.0 T | T T T ) T I T | T T

100.0

75.0

50.0

25.0

0.0 .002 .004 .006 .008 .010 .012
Strain (in/in)
Figure 9. Comparison of Walker's model with initial

and final parameters to Test 80-a short
term monotonic tension test.
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Stress (KSI)

TEST 71 -- STRAIN RATE = 7.253E-8/SEC

---------- WALKER MODEL {FINAL PARARMETERS!
- - - - WALKER MODEL (INITIAL PARAMETERS)

150.0 =1t

1 ! L] ! i ! 1 ! 1 ! 1
- -
125.0 -
100.0 p= -
75.0 -
50.0 -
25.0 -
o -

,’/
0.0 ! | i | { ] 1 | 1 | 1 ]
0.0 .002 .004 .006 .008 .010 012 .014
Strain (in/in)
Figure 10. Comparison of Walker's model with initial

and final parameters to Test 71-a long
term monotonic tension test.
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Figure 13. O-plot using a 4th order polynomial fit, evaluating
o(el) over different strain amplitudes

346




Theta (x 1E—3)

1.20

1.00

0.80

o
Lo}
o

0.40

0.20

0.00

prrg ey rre b e v by v v rer et vyl er s rga el i i o

C1im

132

134

Figure 14.

136 138 140 142

Stress (KSI)

O-plot using a logarithmic curve fit of 0 vs €

347

T i Tt vvrrevirr e errvr it et ivrret I RRARRRARAL

144

I

146



Theta (x 1E-3)

4.00

3.00

2.00

1.00

0.00

-1.00

j *
-
N
. * .
] *
~ *
7 *
]
~ *
- *%
- -
n *  »
—.*
. * S
- *
: T,
] - *
7 * ¥ wn * % »*
— * * - - ** .
- * * *‘_* . * " **
L 4 * L3
i L *ﬁ
* PR IR I
- . w x5 .
B * & % % *
- *% * *
w ¥
" * * % ¥ *
— * * %
* *
1 * * 9
- *
.
T T A T I N D S I O O O B O
125 130 135 140 145 150
Stress (KSI)
Figure 15. O-plot constructed by finite difference
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TEST 86 ICYCLE 10) -- STRAIN RATE = 1.002E-~3/SEC

---------- WRLKER MODEL {FINRL PRRAMETERS)
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75.0 p=
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Figure 16.

Strain (in/in)

Comparison of Walker's model to the last
cycle of Test 86.
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TEST 80 (CYCLE 103 -- STRAIN RRTE = 3.054E-5/SEC
---------- WALKER MODEL (FINAL PARAMETERS)

150.0 ] 1 T T T T T ]

125.0p=

100.0 =
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Figure 17. Comparison of Walker's model to the last
cycle of Test 80.
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A unified numerical method for the integration of stiff time-dependent constitutive
equations is presented. The solution process is directly applied to a constitutive
model proposed by Bodner. The theory confronts time-dependent anelastic behavior
coupled with both isotropic hardening and directional hardening behaviors. Pre-
dicted stress-strafn responses from this model are compared to experimental data
from cyclic tests on unfaxial specimens. An algorithm is developed for the effi-
cient integration of the Bodner flow equation. A comparison is made with the Euler
method for integrating these relations. Additional comparisons are made with the
model developed by Walker using the Euler integration method. An analysis of
computational time is presented for the three algorithms.

I. Introduction

The development of constitutive models for the use in the structural analysis of
aircraft gas turbine engine components has been an on-going process for many years.

Recent investigators have chosen to combine the physical aspects of the various
non-linear effects into a unified theory in which all phenomena are coupled. Qne
such theory was proposed by Bodner and Partom (1). This theory forms the basis for

the investigations in this paper.

The usual approach for the integration of this type of model is either an Euler
integration technique of direct "marching" or the second-order Adams-Moulton

predictor-corrector technique (2).

II. Method

A new approach which uses a matrix integration technique has been presented by
Tanaka (3). This approach solves for all the variables at the same time, thereby
proposing to shorten the computational process and result in a stable integration
scheme. The process should allow for larger time steps to be chosen than the Euler
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technique to achieve the same accuracy. The process is also stable. Therefore
short computational times are the goal to be achieved for a given problem. Unified
computative models such as

sxD{c-eM (1)
. N -

e =°f( o, x, T} (2)
k=gl a1y (3)

may be treated by this technique.

gquation (3) may be enhanced by including work hardening and recovery formats,
i.e.,

N

& e

= h { g, X, T} é

-~ - -

-r{o, x, T} (4)

Algorithm:

A numerical algorithm has been developed to numerically solve for the state
variables represented in equations (zf - (4) subjected to a time - varying total

strain function.
Equations (2) - (4) are formed into a matrix of the form
Mx=0>

Where M is the system Jacobian matrix, x is the vector of unknown variables, and b
is the solution and error correction matrix.

This matrix is successively reformed and inverted to affect the solution of the
state variables. No attempt is made to iterate on the matrix construction during a
particular strain incremental step. Thus, the process constructed herein is a
matrix extension of an Euler method in which all variables are calculated simulta-
neously based upon a driver of the state variables from the previous strain state.

Results:

The basic disadvantage in using Tanaka's NONSS (Noniterative Self-Correcting
Solution) technique is the solution time which is excessive. The execution times
for the load cases studied are summarized in Table I. The times shown are for a
single load history at 2000 F, a strain rate of 4 x 10 -5 per second, a strain
range of .6%, and a R-ratio of minus infinity. All computation times shown in
Table I represent actual numerical computation time, the computer time spent for
I/0 and for accessing the clock were subtracted since the three routines differed
in their respective 1/0 burdens. The convergence criterion used in each of the
three routines was identical, namely the calculated out-of-plane stress for the
uniaxial specimen was forced to be within a small tolerance of zero.

354



The first 5 cases shown in Table I summarize the experience with the NONSS inte-
gration method. It can be seen that the method is in general slower than the other
two routines studied (Bodner's model using Euler integration shown as cases 6
through 10 and Walker's model using Euler integration shown as cases 11 through
15). In addition it can be seen that there is a tendency to fail to converge for
coarser time steps. One difference between the NONSS routine and the other two
studied is the lack of a self adaptive time step. This is evident in the com-
parison of the computing times in cases 3 and 4 where the number of integration
time subincrements was doubled resulting in an approximately doubled cgmpu§1ng
gime. For the other two routines the number of subincrements was set 1n1t1a11¥ for
each increment, but underwent an automatic readjustment internally (self-adaptive
time steps). This self adaptive feature often results in the same overall compu-
tation time even though the initial subincrement value was high. Inclusion of a
self adaptive time step with the NONSS method would likely have prevented the
convergence failures which occurred in cases 1 and 2 without significant loss of

efficiency.

The present study supports the conclusion reached by Kumar et. al. (7) and by
Imbrie, Haisler, and Allen (6); namely that the Euler forward difference or a minor
modification of it is the most efficent method. Evidence of this for the NONSS and
Euler methods js seen by comparing cases 5 and 9 in Table II. For case number 10,
the self adaptive time stepping was suppressed in order to get a direct comparison

of the two methods.

The cases 6 through 9 and 12 through 14 compare the response of Bodner's and
Walker's models to various initializations of the subincrement parameter. For
Walker's model the self adaptive time step quickly finds the lowest level and
consequently completes the integration in the same amount of computing time regard-
less of the initial value of the subincrement. For Bodner's model this is also
true to some extent. However an examination of case number 7 shows that initial-
izing the subincrement parameter at too small a value can actually increase the
total integration time. Thus there appears to be an inherent instability for
Bodner's model which detracts from the overall efficiency. Additional study is
required to identify the source of this instability and to determine if strategies
exist which might prevent it.

A detailed analysis of the portions of each code where the computing time was
actually spent showed that nearly 33% of computing time consumed by the NONSS
method was spent in matrix inversion. This result suggests that considerable
efficiency for the NONSS method could be gained if the inverted matrix were
assembled directly. It was also noted that the algorithm used for Walker's model
contained some redundant calculations which, if removed, would save approximately

20% of computing time.
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CASE

12.
13.
14.
15.

Table I

A Comparison of Computing Times For 3 Constitutive Model Routines

#  THEORY METHOD CYCLES
Bodner’ NONSS.- 2
-Partom

2
2
2
2
Bodner Euler 2
-Partom (self-adaptive)
2
2
2
2
Bodner Euler self- 2
-Partom adaptive, without
directional hard-
ening terms
Walker Euler 2
(self-adaptive) 2
2
2

* 0.78 to assemble matrix, 1.15 to invert matrix

INCREMENTS

80

80
80
80
320
80

80
80
80
320
320

80
80
80
320

SuB-
INCREMENTS
2

o H» W

@ N

** 0 81 when adjusted for excess material properties calculations
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3.50
6.34
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1.28
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1.26
1.76
1.43
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0.45
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A viscoplastic material model for the high temperature turbine airfoil
material B1900 + Hf has been developed under NASA contract NAS3-23925,
"Constitutive Modeling for Isotropic Materials (HOST)"', and has been
demontrated in a three dimensional finite element analysis of a
typical turbine airfoil. The demonstration problem is a simulated
flight cycle and includes the appropriate transient thermal and
mechanical loads typically experienced by these components. The
Walker viscoplastic material model was shown to be efficient, stable
and easily wused. The following report summarizes the demonstration
analysis and evaluates the performance of the material model.

Background

In recent years unified constitutive models have been developed as
alternatives to the classical elastic-plastic-creep models for
modeling nonlinear material behavior. These unified models are
mathematically and functionally elegant and are capable of
representing material nonlinear behavior over a wide range of
temperatures and loading conditions while avoiding the simplifying
assumptions of classical theory. The unified models are characterized
by the use of a kinetic equation to relate inelastic strain rate to
the applied stress and one or more internal state variables.
Evolutionary equations are used to describe the variation of the
internal state variables with loading history. Models of this kind
have been shown to be capable of treating all aspects of inelastic
deformation including plasticity, creep and stress relaxation.
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Several unified models are being evaluated in a current NASA sponsored
technical program, '"Constitutive Modeling for Isotropic Materials
(HOST)"'. Part of the evaluation includes a demonstration in an
analysis of gas turbine component under simulated flight conditions.
This paper presents the results of the demonstration of one of the
unified models; the two state variable model patterned after
Walker?'?. 1In this model, the general form of the inelastic flow law
realtes the plastic strain rate tensor, Cij, to the applied deviatoric
stress, Sij, by the simple realtionship:

. Sij - Qij
Cij = f
K

where (1ij represents the "equilibrium" or '"back" stress; and K, a
scalar quantity, represents the degree of isotropic hardening. This
two state variable unified model was developed by Walker?'? and
modified during the present NASA program', and includes the increased
computational efficiency features developed by Cassenti®.

Component Finite Element Model Descrition

The component chosen for the demonstration of the B1900 + Hf
viscoplastic material model is the airfoil portion of a typical cooled
turbine blade. The foil was analyzed using the MARC®* finite element
program. Figure 1 shows the finite element mesh used in the analysis.
A total of 173 elements and 418 nodes were used to describe the
geometry, resulting in 1086 degrees of freedom. Two element types were
used in the mesh. The bulk of the airfoil was modeled using 8 noded
solid elements (MARC element type 7), but a portion of the leading
edge was modeled with higher order 20 noded solid elements (MARC
element type 21 ). A total of twenty four higher order elements were
used in this region.,

Boundary Conditions and Loading

The loading and boundary conditions were chosen to simulate a typical
commercial engine flight. The flight simulation is shown schematically
in Figure 2 and 1includes periods of Taxi, Take-Off, Climb, Cruise,
Descent , Taxi and finally Shutdown. The Take-Off potion includes a
momentary pause in engine acceleration to more faithfully simulate
actual "rolling take-off'" conditions. The range of foil temperatures
and the centrifugal load spectrum encompassed in the simulated flight
excercises the material model over most of 1its range of
applicability.
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Radial deflections were specified to be zero at the radially innermost
section of the foil. Additional nodal boundary conditions were
imposed in this plane to fully suppress rigid body motion.

The flight cycle was described in the stress analysis as a series of
load increments which accounted for time steps and corresponding
centrifugal loads and temperature profiles which were accessed from a
previously generated thermal tape. The analysis proceeded until the
cyclic response of the foil was noted to be stable from one flight to
the next.

To allow the possibility of a very small load increments in the stress
analysis, temperature profiles were defined frequently on the thermal
tape. The maximum nodal temperature change from one profile to the
next was 50C. In the Take~Off portion of the flight, where foil
temperatures change rapidly, 25 time points were used. During the
Cruise portion of the flight, the temperature profile is essentially
constant. However, the material model state variables continue to
evolve ( e.g. creep deformation), so that step size 1is still
important. Consequently, a large number of increments, (twenty-eight),
were used in this portion of the flight. In total, 83 1loading
increments were used for each flight.

Stress Analysis Resultsj; Accuracy and Stability

Two locations on the airfoil have been selected to illustrate the the
results of the analysis. The behavior at these locations was expected
to be very different and to provide an evaluation of the model over
the widest possible range of conditions on the airfoil. Figure 3
shows the location of these points superimposed on the temperature
profile during Cruise. Point A corresponds to the integration point
nearest the external wall at the leading edge 'hot spot", and was
expected to have the largest amount of inelasticity in the foil. Point
B corresponds to the integration point nearest the internal wall at an
adjacent "cool spot". Both points are in the region of the model
having higher order solid elements.

Figure 4 shows the strain - temperature history at the locations of
interest during the first flight. The Take~Off portion is shown in
more detail than the remainder of the flight. The various parts of the
flight are 1labeled consistently with the flight definition shown in
Figure 2. Figures 5 and 6 show the stress - strain response during all
three flights at locations A and B respectively. The two locations
present somewhat different pictures of the cyclic response: At
location A, it 1is appears that a stabiblized hysteresis loop is
achieved after just three flights. At the end of Take-Off, the largest
variation in stress or strain between the second and third flights is
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less than 2% ( see Table 1 ) and this is much less than the change
between the first and second flight. However at location B the change
between successive flights 1is decreasing less rapidly ( 5% and 4% ).
Thus the analysis predicts that different parts of the foil stabilize
at different rates, which 1s reasonable since the loading and
temeratures vary significantly from one location to another. In an
actual airfoil it could be expected that the cyclic response from one
flight to the next may be very similar even though it may never
completely '"stabilize" due to load redistribution from adjacent
sections. As a result the hysteresis loop at any location may ratchet
throughout the service life. Consequently, it is not appropriate to

judge the material model stability based on the stress - strain
response alone. More useful criteria are those of smoothness and
sensitivity to step size. The stress - strain response in Figures 5

and 6 shows no tendancy to severe oscillation. The "looping" observed
during initial loading at location A is a result of the complex
thermal and mechanical loading on the foil during the '"rolling
take-off" portion of the flight and should not be interpreted as of a
material model deficiency.

Table 1
Change in stress and strain from one flight to the next

Values at the end of Take-Off

Flight Stress Strain Inelastic Strain
(MPa) (%) X
At Location A
1st -235.9 -0.339 -0.239
2nd -213.1 -0.344 -0.267
3rd -209.7 -0.343 -0.276
At Location B 1st 629.7 0.365 0.068
2nd 594.5 0.371 0.096
3rd 569.0 0.376 0.119

Additional insight regarding the behavior of the material model and
the adequacy of the solution can be gained by examining the evolution
of key state variables and the inelastic strains. Figure 7 shows the
evolution of the back stress in the radial direction at locations A
and B during the first flight. Once again, the Take-Off pause is
easily identified. The evolution of the inelastic strain in the
radial direction during the first flight is shown 1in Figure 8 for
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location A. It 1is clear that these variables evolve smoothly, adding
confidence in the behavior of the model and the fidelity of the
analysis.

Figure 8 shows the accumulation of inelastic strain at location A
during all three flights. Several observations can be made. First, the
bulk of the inelastic strain is accumulated during Take-Off on the
first flight. Secondly, the element exhibits some degree of reversed
inelasticity as evidenced by the decrease in the inelastic strain
during Cruise and Descent. The Take -Off portions of the second and
third flights have nearly the same amounts of inelastic strain
accumulation, indicating that the overall hysteresis loop shape is
essentially unchanged.

A further check on the model can be made by checking that the
effective stress and effective strains during initial stages of
loading coincide with the normal monotonic tensile behavior. This
check is valid only during early stages of loading before significant
inelastic history has been accumulated. This check was made for
location A at increment 19 which shows the first significant amount of
inelastic strain. At increment 19, the inelastic strain is
approximately 10%Z of the total mechanical strain. On the previous
increment the inelastic strain was only 4% of the total strair. Figure
9 shows the monotonic stress - strain curve predicted by the material
model (at a temperature and strain rate consistent with increment 19)
along with the effective stress/ effective strain calculated for that
increment.

Sengitivity to Step Size and Efficiency

A study was conducted to determine the sensitivity of the solution and
material model behavior to step size. The reults reported above, (Base
Case), were obtained using 23 increments to describe the Take-Off
portion between ground Idle and the end of Take~Off. In this study,
this same period was described in 10 increments, (Case 2), and in 6
increments, (Case 3). Only the first flight was studied. Figure 10
shows the resulting stress - strain response at location A . Case 3
failed to converge to a solution on increment 8. The convergence
failure occurred at an element other than location A. Case 2
converged for all increments and produced results at the end of
Take-Qff which are in very good agreement with the Base Case.

It should also be noted that the improved efficiency integration
techniques introduced by Cassenti® resulted in very fast solution
times for the nonlinear analysis. Computing times for the nonlinear
analysis were compared to computing times for a conventional elastic
analysis at various times in the flight cycle. It was found that the
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matrix solution times were the same, indicating that the material
model routines are very efficient. The efficiency measures developed
by Cassenti avoid matrix inversion on each increment., Instead, the
stiffness matrix is assemble at a reference temperature only, and any
change in the stiffness due to temperature dependent elastic
properties 1is passed to the main MARC program as an incremental
inelastic stress vector. The reference temperature stiffness matrix is
assembled only at the start of the inelastic analysis and each time
the inelastic analysis is restarted. The net effect is that an
inelastic analysis involving several increments actually uses 1less
computing time than an equal number of separate elastic analyses,
because each separate elastic analysis requires the stiffness matrix
to be assembled anew.

Conclusions

The two state variable (Walker) viscoplastic model for B1900 has been
successfully demonstrated 1in an analysis of a turbine airfoil under
complex and realistic flight cycle loading. The model behaved very
stably thoughout the flight cycle, was easily wused and 1is very
efficient. Each 1inelastic solution is no more expensive that an
ealstic solution. The model was demonstrated using both linear strain
and higher order three dimensional elements. A sensitivity study
indicates that surprisingly large time/temperature/load steps could be
used.
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Unified constitutive models are characterized by the use a single
inelastic strain rate term for treating all aspects of inelastic deformation,
including plasticity, creep, and stress relaxation under monotonic or cyclic
loading. The structure of this class of constitutive theory pertinent for
high temperature structural applications is first outlined and discussed. The
effectiveness of the unified approach for representing high temperature
deformation of Ni-base alloys is then evaluated by extensive comparison of
experimental data and predictions of the Bodner-fartom and the Walker
models. The use of the unified approach for hot section structural component
analyses is demonstrated by applying the Walker model in finite element
analyses of a benchmark notch problem and a turbine blade problem.

INTRODUCTION

It is well-known that accurate prediction of component fatigue lives is
critically dependent on the success with which local inelastic stress/strain
states in the vicinity of holes, fillets, and other strain concentration sites
can be calculated. Stress/strain computations for hot section components are
complicated by two factors: (1) complex component geometries, and (2)
nonlinear material behavior associated with high temperature creep-plasticity
effects. The latter factor is particularly significant for turbine engine
components in view of the fact that the combinations of centrifugal,
aerodynamic, thermal and other mechanical loads that typically occur in a
flight operation are so severe that they tend to drive the underlying material
response beyond accepted limits fcr linear elastic behavior and into the
regime characterized by inelastic, time- and temperature~dependent
deformation, thereby rendering elastic analysis methodologies inapplicable.
Thus, an accurate account of geometrical complexities, three-dimensional and
inelastic effects of hot section components requires a nonlinear finite-
element methodology with an advanced material constitutive model appropriace
for high temperature applications.

* Work supperted by NASA Lewis Res2arch Center through Contract No. NAS3-
23925.
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Advanced constitutive models which have been developed for high
temperature applications are generally based on the unified approach,
utilizing a single inelastic term to encompass all aspect of inelasticity,
including plasticity, creep, and stress relaxation. Unified constitutive
models which have been proposed in the literature include those of Walker [1],
Bodner-Partom [2,3], Miller [U4], Krieg, Swearengen and Rhode [5], Chaboche
[6], Robinson (7], Hart [8], and Lee and Zaverl [9]. Of these newly proposed
constitutive models, only a small number of them have been used in conjunction
with finite-element methods for structural analysis applications. Despite the
limited experience, the earlier works [1] clearly demonstrated that the
unified approach 1is entirely compatible with three-dimensional inelastic
finite-element formulations, and constitutes a new approach for structural
analysis which has heretofore been based on classical concepts with uncoupled
creep-plasticity models. In avoiding the simplified assumptions of classical
theory, the unified theory can more realistically represent the behavior of
materials under cyclic loading conditions and high temperature environments.

A Jjoint effort by Southwest Research Institute and Pratt & Whitney
Aircraft has been underway for the past two years [10,11] to: (1) develop
unified constitutive models for representing high-temperature, time-dependent
inelastic deformation of initially isotropic cast nickel-base alloys, and (2)
apply a unified constitutive model for hot section component analysis. This
effort is funded under the HOST (Hot Section Technology) Program managed by
NASA Lewis Research Center. The objective of this paper is to summarize the
results to date concerning the use of the unified approcach for modeling high
temperature deformation of nickel-base alloys and for structural analysis. In
this paper, the structure of unified constitutive theories pertinent for high-
temperature structural applications is first outlined and discussed. The use
of the unified approach for representing high temperature deformation is then
evaluated by extensive comparison of experimental data of a nickel-base alloy
and predictions of two unified models: the Bodner-Partom and the Walker
models. Finally, the use of the unified approach for hot section structural
component analyses is demonstrated by applying the Walker model to finite
element analyses of a benchmark notech problem and a turbine blade problem.

OVERVIEW OF UNIFIED CONSTITUTIVE MODELS

The "unified" models are inherently incremental (rate formulation),
retaining the separation of elastic and inelastic behavior and the assumption
of plastic incompressibility. Thus,

N P (12)

and

éﬁk = 0. (1b)

All inelastic behavior |is repQ%Fented in the single term é?.. For small
deformation, the elastic term, ¢ follows Hooke's law. Deveﬂcpment of the

250
inelastic strain rate term generéihy includes three components: a flow law, a
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kinetic relation, and a set of evolutionary equations for the internal
variables describing the development of hardening and recovery processes due
to deformation and thermal histories. An extensive review of the general
forms for these components is given in [10,12].

Most models use the generalized form of the Prandtl-Reuss flow law, i.e.

.p - -
€1y * x(si:j niJ) (2)
where is the deviatoriec stress, Q is also a deviatoric tensor often

referreJJto as the equilibrium stress,Jback stress, or kinematie hardening
variable, and ) is a scalar coefficient incorporating isotropic hardening. In
one model examined (Bodner-Partom), the Q is dropped and directional
hardening is included in an incremental scala}Jfashion in the coefficient a.
Eq. 2 defines the direction of inelastic flow with respect to the applied
deviatoric stress SiJ or the effective stress SiJ - giJ'

The functional relationship between the scalar increments of strain rate
and stress and the temperature, T, and internal variables, X is called the
kinetic relation, e.g.:

i’

p _
02 = F(JZ’ T, Xi) R (3)
where
p_.l1:p :p
DI = 5 eiJ sij
and
-1
Jp = 5085y - 8, (8, -9, )

The number of internal variables, Xi’ used is arbitrary but usually is
restricted to two; one representing isotropic hardening and the other
directional (kinematic) hardening. At high temperatures, the evolutionary
equations for the internal variables are based on the well-accepted Bailey-
Orowan theory for a hardening process proceeding with accumulating deformation
and a recovery or softening process proceeding with time. The evolution rate
of an internal variable is then the difference between the hardening rate and
the recovery rate.

Thermal history effects are generally modeled by including thermal terms
in the evolution equations for the isotropic and directional hardening
variables {12,13]. The general forms of the evolution equations for the
isotropic hardening variable, K, and the directional hardening variable,
nij’ are [12]:

K = h1(K)t:11 - r(T,K) + 91(K,T)’i‘ (1)
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nij z hZ(QiJ)MiJ - d(nij,

)T Wi

T)NiJ - rZ(Qij’T)Vij (2)

+ 02(91

¥’ J

where hq, £qy and o, represent, respectively, the hardening, static thermal
recovery, and thermal history functions for K; h2, d, Poy and 0, represent the
hardening, dynamic recovery, static thermal recovery, and thermal history
functions for Q.. , respectively; N. ., Vi and W.;. are directional indices
related to unitljvectors represenﬁ%%g piastic s%ﬂain rate, stress, or the
directional hardening variable [12]. The measure of the hardening rate, M, is
taken as either the inelastic strain rate sgj or the inelastic work rate,

Wp = cijeij°

The appropriate forms of o, and 0, are not very well established at this
time. A general approach f&r mod%ling thermal history effects is to
express 0, and 0, as functions of the internal variable and temperature
[12,13]. 'New ingernal variables may also be introduced [14]. In a particular
approach (1,11], o, and e% are assumed to depend on temperature only and are

taken as functions représented by variations of material constants with
respect to temperature [1,11].

In the following sections, extensive experimental correlations with two
specific models, Bodner-Partom [2,3] and Walker [1], will be presented. While
following the general form outlined above, these two models differ
considerably in detail but both have found considerable use in high-
temperature problems. Details of both sets of equations are given in Tables !
and 2.

EVALUATION OF THE BODNER-PARTOM AND THE WALKER MODELS

Extensive experiments were conducted on a cast turbine blade or vane
alloy (PWA B1900+Hf) over the entire range of conditions experienced by hot
section components, which inc%ude tem%erature ranging from room temperature to
1093C, strain rates from 107! to 107¢ sec™' and strain of * 1 percent. The
B1900+Hf alloy has a grain size of .8 mm (ASTM No. -2 to -3), a y° size of
0.9 um in the fully heat-treated condition, and low porosity. All specimens
were obtained from a single heat.

Testing included isothermal tension, creep, stress relaxation, cyclic
loading (with and without mean stress or hold time), thermomechanical fatigue
(TMF) cycles, and proportional and nonproportional biaxial strain cycles.
Details of the experimental procedures are described elsewhere ([11]. As
descriped in [11], the material constants for the Bodner-Partom model were
derived from uniaxial tension data only, while the Walker model required, in
addition, a small amount of cyclic data. Tables 3 and 4 summarize the Bodner-
Partom and the Walker model constants for B1900+Hf, respectively. Formalized
procedures for developing model constants are being developed [11]. In the
past, this function has been a major detraction from use of these models. The
remaining cyclic, creep, relaxation, and biaxial data are predictions from
each model.
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A. Deformation Under Uniaxial Tension, Creep, and Cyclic Loading

Figure 1 shows monotonic tensile results and corresponding mode
calc*lations at three temperatures and a constant strain rate of 8.3 x 107
sec™'. These monotonic stress vs strain data are used to establish the
constants for the evolutionary equations of the internal variables describing
hardening and recovery behavior. In the case of the Walker model, the cyclic
stress-strain curves are needed, in addition, in order to differentiate
between the isotropic and directional components. Similar tensile data over a
wide range in temperature and strain rate are given in Figure 2. Temperature
and rate variations are needed to fix the constants related to the kinetic
equations. At 760 C (1400 F), hardening mechanisms are dominant, while at
1093 C (2000 F), the recovery terms in the evolutionary equations become
dominant. The transition between hardening and recovery is dependent on both
temperature and strain rate. At 760 C, the Walker model includes a strain-
aging term which accounts for the region of negative strain-rate sensitivity.

Figure 3 shows the correlation for steady-state creep rate as a function
of the applied stress at four temperatures. The hardening-recovery transition
is evident in these data also. These results are predictions obtained from
the monotonic tensile data.

A sample cyclic stress-strain curve at 1093 C is given in Figure 4.
These are saturated (stable) loops after a small amount of cyelic hardening.
Cyclic hardening or softening is included in the models. Cyclic stress-strain
data obtained by incrementally increasing the strain range for completely
reversed cycling (R = -1) is summarized in Figure 5 for four different
temperatures. Here again, it should be emphasized that the Bodner-Partom
model predictions are based on monotonic input data only.

The effects of imposed compressive and tensile mean strains on the cyclic
constitutive behavior of B1900+Hf have also been investigated. The results
for 760 C are summarized in Figure 6, with corresponding model predictions
using both the Bodner-Partom and the Walker theories. For purposes of
comparison the half stress range (40/2), half cycliec plastiec strain
range (Ae /2) and mean cyclic stress at both the first and sixth cycle are
plotted Wersus the half strain range (Ae/2) for R ratios (minimum strain/-
maximum strain) of 0, -1, and -=. Two important observations in Figure 6 are:
(1) the experimental and theoretical saturated cyclic stress-strain curves
(Ac/2 - Ae/2 curves) appear to be unique at a particular strain rate and
temperature and are independent of the R ratio, and (2) both unified models
predict a drift in the mean cyclic stress which is not always observed in the
experimental data.

Stress relaxation tests were performed by holding strain at various
locations of the hysteresis loops for a two minute period. Figure 7 compares
model predictions and experimental results of stress relaxation during strain
hold on the unloading portion of the saturated hysteresis loop of B1900+Hf at
1093 C. The Bodner-Partom calculations agree well with the experimental data
for strain holds at .6% and .55%. At .5%, the experimental result indicates
reverse stress relaxation as the stress is slightly increased from compression
to tension during the hold period while the Bodner-Partom model predicts a
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constant stress with essentially no stress relaxation. In principle, the
reverse stress relaxation process is capable of prediction by the equilibrium
stress approach. However, no stress relaxation calculations are currently
available for the Walker model.

B. Deformation Under Thermomechanical Cycling

In practice, component parts are subject to simultaneous load and thermal
cycling and a dominant failure mode is thermomechanical fatigue (TMF). The
ability of a unified constitutive model to predict response to TMF cyeling is
of prime interest and constitutes a rigorous test of the model. It is of
further interest to determine whether a model based on equilibrium isothermal
data can handle the nonisothermal response problem. Numerous experimental TMF
cycles have been run with both in-phase and out-of-phase temperature-strain
cycles and with and without hold time. Figure 8 presents a typical data vs
model correlation for a simple in-phase cycle. Similar results are obtained
for an out-of-phase cycle with a 60 second strain hold at maximum compressive
strain, Figure 9. The cycle time for both the in-phase and out-of-phase
cycles was 60 seconds. The correlation with both isothermally-based models is
reasonably good, indicating that no obvious correction is needed to account
for the rate of change in temperature. For materials exhibiting strong
dynamic strain aging effect or microstructural changes during thermomechanical
cycling, this may no longer be the case and extra terms in the constitutive
model may be required.

C. Deformation Under Biaxial Loading

Another critical test for the unified models is their ability to handle
complex multiaxial stress or strain histories. Hardening laws under
nonproportional loading still pose a problem in classical rate-independent
plasticity. Most of these theories are based on initial yield and subsequent
multiple loading surfaces with a normality rule. While unified theories can
be developed based upon yield surface or plastic potential concepts [6-9], the
models studied here assume viscoplastic flow occurs at all finite stress
states other than S, ., = Q,, (Bodner-Partom assumes Q,, = 0). The evolutionary
equations in combinﬁ%ion alth the flow law define tﬁé incrementally-developed
hardened state for each material direction.

Figure 10 shows experiment-model correlations for a strongly
nonproportional strain cycle in which the axial and torsional strain are
controlled to have the same effective cyclic strain amplitude with a 90° phase
difference between the two inputs. This results in the nearly circular stress
trajectories shown in Figure 10 along with the individual stress-strain
hysteresis loops. The models, based on uniaxial data, show good qualitative
agreement with some overestimate of the stress amplitudes.

Previous results with Hastelloy X [10] had shown that cyclic strain
hardening under similar out-of-phase, nonproportional loading was
significantly greater than that obtained under uniaxial or other proportional
loading paths. For B1900+Hf, sequential proportional and nonproportional
straining histories produced no differences in hardening behavior at all
temperatures from 20 C to 980 C. There seems to be a difference in this
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aspect of hardening between the precipitation-hardened alloys and dominantly
solid solution alloys. The nonproportional strain paths also provide useful
information on the correct form of the flow law. In the strain trajectories
of Figure 10, there is observed a phase lag of approximately 20° between the
inelastic strain rate ¢, and the deviatoric stress Sij' This phase lag is
reascnably predicted by ‘the Walker model through the use of the equilibrium or
back stress term, Qij‘ In the Bodner-Partom approach, ¢? and Sij are assumed

. i
coincident. J

Figure 11 shows another more complex nonproportional path where the
frequency of the shear strain is twice that of the axial strain. Again,
qualitative agreement with the models is good; however, the hysteretic energy
loss seems to be greater in the models than in the experiment.

HIGH TEMPERATURE STRUCTURAL ANALYSES

Preliminary effort to demonstrate the utility of the unified models for
component analysis has been accomplished at Pratt & Whitney Aircraft. For
this purpose, the MARC nonlinear finite element computer program was the
vehicle for incorporating the viscoplastic models. The incorporation in the
MARC program was achieved by means of an initial stress technique. All of the
material nonlinearity in the constitutive equations is put into an initial
load vector and treated as a pseudo body force in the finite element
equilibrium equations. Because the models form a "stiff" system of
differential equations, it is necessary to form the incremental constitutive
equation appropriate to the finite element load increment by means of a
subincrement technique. Then the constitutive equations are integrated over
the small subincrements to form an accurate representation over the finite
element load increment. The integration of the constitutive equations is
currently performed by using explicit Euler forward differences with
subincrement time step sizes determined by convergence and stability
criteria. Other integration schemes are under investigation in the attempt to
improve computational efficiency.

A. Benchmark Notch Analyses

The MARC finite-element code and the Walker model were used to analyze a

number of benchmark notch problems. Elevated temperature testing of
instrumented notch round specimen was also conducted to generate notch
displacement data for verification of the anzalytical methodologies. The

benchmark notch testing was conducted on specimens of design shown in Figure
12a for six load patterns at 871°C over load ranges sufficient to result in
short time 1inelastic behavior and over load time sufficient to induce
significant time-dependent inelastic notch strain. The lcading conditions and
the experiment procedures for the benchmark notch experiments are described in
(11]. In these experiments, the radial and the diametrial displacements at
the notch throat were measured.

The finite-element mech for the benchmark notch specimen is shown in
Figure 12b. In one of the benchmark experiment, the notch specimen waf loaded
under monotonic tension at a nominal strain rate of 2x1077 sec™'. The
variation in the diametrial displacement at the nctch throat with the applied
load is presented with model prediction in Figure 13. At the imposed nominal
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strain rate of 2x10~2 sec~!, the limit load was 35,800N (8050 1lb). Finite
element load versus displacement predictions agree well with the test data at
low values of diametrial displacement, but diverge at strain conditions
indicative of bulk yielding in the notch. The limit load is overestimated by
18%.

In another benchmark experiment involving dwell, the notched specimen was
cycled at + 331, 2352, *365, +386, and * 414 MPa for 10 cycles at each stress
level. Additionally, a minute hold was applied at both maximum tension and
compression. The variation of the peak-to-peak notch displacement and the
cyclic inelastic notch displacement with the cycle number is shown in Figures
14a and b, respectively. As noted in Figures 14a and b, the finite element
analysis predicts the peak-to-peak variation in the throat diamectrial
displacement to within 14%, but underestimates the cyelic inelastic notch
displacement by nearly 60% at the highest test loads. However, it should be
noted that the inelastic notch displacements are quite small.

B. Inelastic Turbine Blade Analysis

The MARC code along with the Walker constitutive model were used to
analyze a turbine blade under a simulated flight loading spectrum. The FEM
blade model with the temperature and engine RPM flight history are given in
Figure 15. The flight history, representative of a commercial airline, has
some high transient response early followed by steady cruise conditions.
While thermal and mechanical response is computed continuously for the
complete blade, we will present here a comparison only for a selected element
between a tctally elastic analysis and the viscoplastiec analysis. This
comparison is given in Figure 16. Besides showing the difference in response
for a given problem by including viscoplastic behavior, this exercise provides
some comparison of the relative computational times for the two problems. 1In
this case, the viscoplastic computation time was about seven times as great as
for the elastic case. More recent work has reduced this ratio to less than

two [15].
CONCLUSIONS

Rapid advances are being made in the development of strongly nonlinear,
time- and temperature-dependent constitutive models for metals used in gas
turbine hot section components. These models, in conjunction with finite
element structural analysis codes, will allow accurate prediction of stress
histories and strain accumulation of components in service. This capability,
particularly for regions of local stress concentration, is essential for
reliable input into cumulative damage or crack initiation algorithms used for
component life prediction. An-increased coupling between constitutive models
describing stable deformation states and limit conditions describing the
initiation of local material instability or failure is needed.
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CONSTITUTIVE MODEL DEMONSTRATED
IN A THERMAL-MECHANICAL FLIGHT SIMULATION
OF A TURBINE BLADE
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CONSTITUTIVE RESPONSE OF RENE 80 UNDER THERMAL MECHANICAL LOADS

K.S. Kim, T.S. Cook, R.L. McKnight
General Electric Company
Cincinnati, Ohio 45215

Accurate prediction of structural response in the high temperature
environment is a prerequisite for reliable 1ife prediction of hot section
components of gas turbine engines. In many situations, this involves the use
of general purpose finite element code capable of modeling nonlinear material
behavior. The constitutive models of material behavior may be either
classical, 1.e. separation of creep and plastic deformation, or unified,
wherein inelastic deformation as a whole is considered. While there is
considerable interest in the unified theories, these models require further
development of capabilities and experimental verification under realistic
loading conditions. At present, the implementation of unified theories in
numerical analysis is not widespread. The classical theories, on the other
hand, are relatively well established and available in many finite element
codes. Therefore, the prediction of cyclic deformation in this study was made
using a classical model rather than a unified theory. The objective of the
study was to examine the accuracy of a classical constitutive model when
applied to thermomechanical fatigue (TMF) of Rene' 80. Using isothermal creep
and cyclic stress-strain data, two approaches wére used to predict the half
life therma) mechanical hysteresis loops. An elastic-plastic analysis using
appropriate stress-strain-rate data was followed by an elastic-plastic-creep
analysis. This latter approach used high strain rate data for the
elastic-plastic analysis and relied on the explicit inclusion of creep to
develop the appropriate time debendent behavior. Comparison of the two
approaches provides an indication of the importance of explicitly modeling the
rate effects in the thermal mechanical cycles of Rene' 80.
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MATERIAL

The material selected for this study is the conventionally cast superalloy
Rene' 80. The composition (wt. pct.) is: 3.0 pct. Al, 5.0 pct. Ti, 14.0 pct.
Cr, 3.9 pct. W, 4.0 pct. Mo, 9.8 pct. Co, 0.17 pct. C, and the balance Ni.
This nickel-base material is a typical high temperature alloy and is quite
widely used for turbine blades and nozzle vanes. The microstructure of this
alloy has been described by Antolovich and Domas [1,2], but it consists of
large (ASTM 2 to 3), irregular grains with a distribution of grain boundary
carbides and borides. There are several strengthening mechanisms but the
major one is uniformly distributed cuboidal gamma prime precipitates. These
precipitates tend to coarsen with increasing temperature and strain rate and
are at least partially responsible for the temperature dependence of cyclic
deformation. At the lowest test temperature, the deformation is largely
within the matrix leading to matrix failure when a critical dislocation
density is achieved. At the higher temperatures, the large precipitates tend
to disperse the slip, yielding more homogeneous deformation. The damage
accumulates at grain boundaries, leading to the formation of oxide spikes [1];
hence, not only the deformation but also the failure mechanisms are
temperature dependent.

MECHANICAL TESTING

Solid cylindrical specimens were cast to size and final machined using low
stress procedures. The specimens had a diameter of 6.35mm and were 92.1mm in
length. The specimen ends were threaded for attachment purposes.

A broad sequence of thermomechanical and isothermal tests were carried out
to develop and evaluate a TMF model. Isothermal cyclic stress-strain (CSS),
low cycle fatigue (LCF), creep, and relaxation tests were conducted at three
temperatures under a variety of test conditions. The CSS behavior was
examined as a function of strain rate, as was the LCF 1ife. Creep and
relaxation were examined in tension and compression; mean stress effects and
creep-plasticity interactions were investigated. A1l these results will not
be reported here; this paper will concentrate on the time dependent behavior
of Rene' 80.
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A1l testing was carried out in conventional servohydraulic fatigue
machines with extensometry. For the displacement controlled tests, total
longitudinal strain was controlled. The same test setup was used for the
creep tests so that the creep curve was obtained. Data were obtained at three
temperatures, 760, 871, and 982°C; the majority of the testing was done at
the highest temperature. Cyclic testing was done at strain rates of 10, 2,
and 1 percent/minute, with a few tests at 0.2 percent/minute. Previous
testing had established stress-strain behavior at high strain rates,
40-50%/min. [2,3]. Triangular waveforms were used in these tests with several
strain ratios (R_ = eminlemax) employed.

The cyclic stress-strain data was obtained in two ways. At a strain rate
of one percent/minute, fully reversed cyclic tests with open hysteresis loops
were conducted. By recording the loops, the material's approach to stable
behavior was observed. A loop at the estimated half 1ife was selected as
representative of the cyclic amplitude curve. Other strain rate data was
obtained from the LCF tests; the stress-strain values at 0.5 Nf were taken
as points on the cyclic curve. A summary of the cyclic behavior at the three
temperatures and four strain rates is shown in Figure 1. The data shows a
complex pattern of temperature dependent behavior. At 760C, there is very
little effect of strain rate. At 871C, the strength shows a significant
increase with rate, while the 982C stress-strain curve increases only at the
very high rate. This behavior reflects the temperature dependent deformation
mechanism of Rene' 80.

Since the TMF cycles had a period of less than three minutes, the creep
tests concentrated on the early part.of the creep curve. The stress levels
employed were typical of the TMF loads and the initial load was applied at
approximately the rate of the TMF tests. There was slight plasticity in a few
cases but most of the initial loading was elastic. The majority of the creep
tests lasted two to three hours, although a few were taken to failure.

The creep data was analyzed using a nonlinear regression routine and
fitted with the creep curve

C m.n r
=Kot +Qot
) q ’ (1)

where K, m, n, Q, and r are constants determined by the regression.
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Both the tensile and compressive creep data were analyzed using this
expression. It was found that the compression curves could be reasonably
predicted by the tensile data and vice versa. 1In addition, when the creep
rates were examined, at 982C (the only temperature examined at present), the
same creep rates were occurring at the same creep strain regardliess of the
sign of the load. Figure 2 shows the tensile creep data and the resulting
curve fits at 982 and 871C. Since there does not appear to be any variation
in creep associated with the sign of the load, this same fit was used to
describe both the tensile and compressive creep in the modeling.

The Rene' 80 TMF specimens were subjected to the three temperature and
strain waveforms shown in Figure 3. The general testing procedure has been
described by Embley and Russell [4] and consists of two control loops, one for
strain and one for temperature. Induction heating was employed and controlled
by calibrated thermocouples mounted on the specimen shoulders. The TMF cycle
was limited by the solid specimens; forced air cooling would induce
undesirable temperature gradients and was not employed. A strain rate of one
percent per minute was used in the TMF experiments; this resulted in a period
of 1.6 to 2.6 minutes. This consideration restricted the temperature cycle to
100-150°C. This cycle is, of course, not representative of an entire flight
cycle, but it does simulate parts of the cycle, for example, a thrust reversal

[5].

Load-displacement hysteresis loops were recorded periodically throughout
the TMF and LCF tests. Load and strain data were recorded on calibrated strip
charts and used to determine cycles to crack initiation, Ni' and failure,

Nf. The Rene' 80 softened at a constant rate for much of the fatigue test;

an acceleration in the softening rate was used to define crack initiation.
Cycles to failure was defined as 50 percent load drop. The hysteresis loop
nearest Nf/2 was used as the definition of cyclic values. Stress values and
strain ranges were obtained from this loop. The measured plastic strain range

was defined as the maximum width o° the stress-strain hysteresis loop.
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THERMAL MECHANICAL ANALYSIS

Analyses of the thermal mechanical hysteresis loops were made using the
four constant strain triangle model shown in Figure 4. The finite element
program developed by McKnight [6] was used throughout the study. Two
approaches were taken to account for the inelastic deformation at high
temperatures. In the first approach, only the elastic and plastic deformation
was considered. The creep was not explicitly included in the analysis.
Instead, the stress-strain curves at the strain rate used in the TMF tests
were input to the analysis. It may be assumed that the creep was implicitly
included in this case since the creep effects are reflected in the
rate-dependent stress-strain curves.

In the second approach, the creep deformation was explicitly included.
The stress-strain curves at high strain rates, 50%/min, along with creep
constants, were input to the analysis. It was assumed that the creep
deformation is negligible at the high strain rate. A1l the stress-strain
curves used as input in the analysis are half-life curves, as are the
hysteresis loops being calculated in this paper. From the standpoint of life
prediction, using half 1ife data is more practical than relying on the data
based on continuous changes of cyclic response, which is difficult to predict
for the classical constitutive models.

The thermal mechanical cycles analyzed in this study are (Figure 3):

(1) 760 - 8711°%, R,
(i) 81 - 982°, R,

]

1%/min; LIP, CWD, LOP
1%/min; LIP, CWD, LOP

-1, Ae= 1%, €
-1, Ae= 1%, &

For comparison purposes, isothermal cycles are also presented:

2%/min
2%/min and 10%/min

(i1i) 8m°c, R = -1, Ae= 1.0%,
(iv)  982°c, R = -1, Ae= 1.3%,

me Me
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For the elastic-plastic analysis, the six cycles in (1) and (ii) were
analyzed. For elastic-plastic-creep analysis, conditions (i1), (ii1) and (iv)
were considered. The 760-871°C cycles were not considered in the latter
approach because the creep tests were complieted only for 871%F and 982°c

at this time.

For completeness of presentation, the constitutive model used herein is
outlined in the following:

(I) Time-Independent Deformation

The strain component can be written as the sum of the elastic, plastic and
thermal parts:

€..=¢c8 + P 9, 2
i i e f; + e'IJ . (2)

The elastic and thermal strains are given by:

3)
E-eo = 1+\) - _\)_ (
ij E %ij E S5 %k,

o (4)
E.ij = GsijAT 9

where E is the Young's modulus, v is the Poisson ratio, « is the thermal
i is the Kronecker delta and AT is the relative
temperature. For the plastic deformation, the classical incremental
plasticity theory which utilizes the Prandt1-Reuss flow rule, Von Mises yield
criteria and the kinematic hardening rule in the strain space, has been used
in this study. The Besseling's subvolume method [7] is used within this
constitutive framework. In the subvolume method a strain-hardening material
is considered as a composition of several subvolumes, each of which is an
elastic-ideally plastic material. The subvolumes have identical elastic
constants but different yield stresses. The yield function for the k-th
subvolume is given by

expansion coefficient, §

_ _p 2
fio= (egy -~ ey (ogy - ey - Ry (5)
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where eij is the strain deviator, e?jkis the plastic component of e1j
for the k-th subvolume and Pk is the radius of the k-th subvolume yield
surface (P] <P, < ...). Notice that the kinematic hardening rule in the

2
strain space is used in Eg. (5). The plastic deformation for each subvolume

N . N N . - N N -p =-p
is assumed to be isochoric, i.e., €54k 0 , which implies ik ik - The
plastic strain rate of the k-th subvolume is given by
. .- el - &P ) e
e?jk = (e13k e13k) ;emn emnk) “mn , (6a)
Py
if
- _eP
and
P - , otherwise. (6b)
eijk 0

The total plastic strain can be written as the weighted sum of the plastic
strains of the subvolumes satisfying Eq. (6a):

b p (7)
e’ . L ¥y eijk

The determination of . ¥ and also Pk in Eq. (5), can be done by considering
the uniaxial stress-strain curves. For details, the reader is referred to

Besseling [7].

The elastic properties and the stress-strain curves are input at several
temperatures. In a time-varying temperature field, for example, the
thermomechanical process under consideration, the material data,E,v,a,Pk anq
Wk' are linearly interpolated using the input data at nearest temperatures. ¢
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(II) Time-Dependent Deformation
The total strain in the presence of creep is given by
F.). +€(.:. +ge.. (8)

c .
where €ij is the creep strain and others are as given in equation (2). The

creep strain components are given by
. c .
ij ij (9)

where S1 is the stress dgviator. x» is a function of the history of creep
deformation. Oefining ¢ such that

. C

- _ {2 +C - C
e 7[3 sH; s (103
it can be shown that
. C
=3 e
>\ - 2 __
(o}
()
where
—- 3
°'/2 Si5 543
(12)
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The constancy of the volume in creep deformation éﬁk = 0 , Is again
assumed here. The effective creep stra1n.'€c. {s determined by the primary
creep term of the Bailey-Norton type and a steady state creep term;

E- = K.O'-mtn“'Q-U-rt ’ (13)

where the constants are those from (1) and

_c t .c
g = _[ e dt

o]

(14)

Differentiating (13) with respect to time and using equations (9), (11) and
(12), one can show that

S - % S. .kng M 1¢n-1 (15)

for small times where the primary creep dominates. In terms of accumulated
creep strain, equation (15) can be written as

%—Lnn"l—-c 1-?11_
Sin no (e ©)

(16)

®
[
Nf w

Equation (15) is called "the time-hardening formulation" and equation (16) is
called the "strain-hardening formulation" in the context of the creep analysis
under time-varying stress field. In. this study, the strain-hardening
formulation was used simply because it is somewhat favored over the
time-hardening relation from the standpoint of correlating test data. In the
case where the steady state creep is not negligible, the creep time for a
given creep strain must be determined numerically. Then, the creep strain
rate is determined from Eq. (15) with an additional term for the steady state
creep. In this study, the secondary creep was included even though the
primary creep was dominant.
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The stress reversal was assumed to occur if

o * 0
(€1j -Eij)°1j< (17)

where eig is the strain origin which is updated, if necessary, after each
stress reversal. Further explanation of the stress reversal and also the
algorithm of application of the strain-hardening rule can be found in Kraus

[8].
In the finite element analysis, the creep constants K, m, n, Q, and r are

input at a number of temperatures. The creep constants at an intermediate
temperature are linearly interpolated using the data at nearest temperatures.

DISCUSSION OF RESULTS

(I) Elastic-Plastic Analysis

The stress-strain curves at the 1%/min strain rate which were input to the
analysis are shown in Figure 1. Note in the figure that the strain rate
effects below the rate of 10%/min are rather small at 982°C, but they were
considerably larger at 871°C. The analysis results obtained are shown in
Figures 5 and 6 for 760-871°C in-phase and 871-982°c 90° out-of -phase
cycles, respectively. The point "P" on the curves designates the point where
plasticity develops. For further details of the results, the reader is
referred to Cook, et al. [9]. In general, the agreement between the computed
and the experimental hysteresis loops was very good. In particular, excellent
correlation between analysis and test results was found for 871—982°C cycles
for all three phases. The 760-871°C results were satisfactory but not as
good as the 871-982°¢ results. This could reflect the changing inelastic
deformation mechanisms over the 760—871°C temperature range as discussed by
Antolovich, et al. [1,10]. It should be possible to improve the correlation
by incorporating more stress-strain curves between the two temperatures.
Unfortunately, such data are unavailable at this time.
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(II) Elastic-Plastic-Creep Analysis

The material data base for this model, the high strain rate CSS curves and
the creep curves, are those in Figures 1 and 2. Using these data, the
elastic-plastic-creep analysis modeled the cycle using linear strain ramps;
the cycle was divided into 38 identical time steps. For each step, the
elastic-plastic stress analysis was done for the strain increment; then the
stress was relaxed in the strain hold over the time increment. The average
values of the stress in the strain hold were used in the hysteresis loop
plots. The maximum stress relaxation in a step was approximately 70 MPa.

The temperature in the strain hold was set equal to the temperature at the
midpoint of the time step.

First, the isothermal temperature hysteresis loops were obtained at 2%/min
and 10%/min strain rates. The 2%/min hysteresis loops at a71°c and 982°C
are shown in Figures 7 and 8. The correlation between prediction and
observation is excellent for both temperatures.

The 871-982°C thermal mechanica) cycles were reanalyzed for the three
phases. The hysteresis loops are presented in Figures 9, 10 and 11 and are
compared to the experimental curves and the elastic-plastic results. The
shapes of the hysteresis loops agree very well; in particular note the
flattening of the loops in the region of the maximum temperature. The genera1/
features of the CWD loop are accurately reproduced but note that the loop
bears more resemblance to the in-phase than the out-of-phase cycle. This
qualitative observation is supported by the TMF 1ife prediction model work of
Reference 9. That investigation showed that, in terms of 1ife modeling, the
CWD cycle was similar to the LIP cycle and the same stress/temperature
parameters could be used in both.

A comparison of the three 871-982C cycles predicted by the elastic-plastic
and elastic-plastic-creep models shows that there is not much difference in
the results of the two models. 'The elastic-plastic model is marginally better
at predicting the hysteresis loop of the CWD cycle but the results are quite
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similar for the other two cycles. The plastic strain range agreement is
excellent; the time dependence of the load shows some variation among the two
models and the experimental results. The discrepancies in hysteresis loop
prediction seem to be associated with temperature increasing from 871 to 982C
and indicate too high a strength level in this regime. It has not been
determined whether this is due to the material data or the constitutive model
jtself. It must be pointed out that the predicted versus observed loops were
not as good for the lower temperature cycle, 760-871°C, in Reference 9. The
generation of creep data at 760C is presently underway and it will be very
interesting to see whether the inclusion of explicit time dependence improves
the prediction. The results for this one temperature cycle suggest that the
use of high strain rate and creep data can produce hysteretic behavior that is
nearly as good as an analysis based on the correct strain rate.

CONCLUSIONS

This paper examines the applicability of a classical constitutive model
for stress-strain analysis of a nickel-base superalloy, Rene' 80, in the gas
turbine TMF environment. A variety of tests were conducted to generate basic
material data and to investigate the material response under cyclic
thermomechanical loading. Isothermal stress-strain data were acquired at a
variety of strain rates over the TMF temperature range. Creep curves were
also generated over the same temperature regime. Three TMF cycles were
examined at two temperature ranges, 871-982C and 760-871C. Only the former
temperature cycle was modeled in this paper as some of the 760C creep data had
to be regenerated.

Two approaches were taken to analytically predict the hysteresis loops.
In the first approach, the elastic-plastic deformation was considered with
rate-dependent stress-strain curves. In the second approach, the creep
deformation was explicitly included and the stress-strain curves at high
strain rates were input to the analysis. The results indicate that both
approaches provide accurate hysteretic behavior of Rene' 80 under the TMF
loading. The correlation of the predicted and observed hysteresis loops was
excellent over 871—982°C for all three cycles using both approaches. The
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elastic-plastic model predictions did not compare with experiment as well for
the temperature range 760-871%C [9]. As soon as the appropriate data is
available, this cycle will be examined with the elastic-plastic creep model.
For the cycles examined, either model approach can be employed depending on
the material data available.

The results of this paper provide optimism on the ability of the classical
constitutive model for high temperature applications, at least for the
material under consideration. Further efforts with wider range of temperature

cycles and more general loading, including the effects of hold time, mean
stress and strain, would be worthwhile.
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N88-21525

A CONSTITUTIVE MODEL FOR AN OVERLAY COATING

D.M. Nissley, G.A. Swanson
Pratt & Whitney
East Hartford, Connecticut 06108

Coatings are frequently applied to gas turbine blades and vanes to provide
protection against oxidation and corrosion. One class of coatings, known as
overlay, usually has a nickel base with various protective elements added.
Since no strengthening elements are included, it has a very low strength and
becomes highly inelastic in real turbine airfoil applications. By contrast,
turbine blades and vanes are cast from highly strengthened superalloys, which
experience very little plasticity even though the thermomechanical loadings
are severe. Strains generated in the superalloy airfoils during engine
operation are imposed on the much thinner and weaker coating, subjecting it to
severe cyclic damage, which leads to cracking of the coating. These cracks, in
turn, are fatigue initiation sights for the airfoil. Hence, the inelastic
behavior of the overlay coating plays an integral role in controlling the
thermomechanical fatigue life of an advanced turbine blade or vane. This paper
reports the results of an experimental and analytical study to develop a
constitutive model for an overlay coating. Specimens were machined from a hot
isostatically pressed (HIP) billet of PWA 286 (NiCoCrAlY + Hf + Si). The tests
consisted of isothermal stress relaxation cycles with monotonically increasing
maximum strain and were conducted at various temperatures. The results were
used to calculate the constants for various constitutive models, including the
classical, the Walker isotropic, a simplified Walker, and the Stowell models.
A computerized regression analysis was used to calculate model constants from
the data. The best fit (lowest standard deviation) was obtained for the Walker
model, with the simplified Walker and classical models close behind. The
Stowell model gave the poorest correlation.
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£t
€g
€in
€in
€p
€c
€in eff

€in eff

Nomenclature

= stress (psi)

= total strain (in/in)

= elastic strain (in/in)

= ep * ec = inelastic strain (in/in)
= inelastic strain rate (sec-1)

= plastic strain (in/in)

= creep strain (in/in)

= effective inelastic strain (in/in)
= effective inelastic strain rate (sec-1)
= eléstiq modulus (psi)

= time (sec)

= absolute temperature (°R)

= universal gas constant (1545 ___IE:lEfT_ )
1b_-mole- R
m
= apparent activation energy ( ft-1bf )
1bm-m01e

= instantaneous back stress (kinematic hardening parameter) (psi)
= component of instantaneous back stress (psi)

= instantaneous drag stress (isotropic hardening parameter) (psi)

Temperature dependent material constants (in consistent units):

A1,A2,A3,R4,n,N7,N7,n9,Nn105N717,M0,K71,K2,5,00
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Introduction

One of the major goals of the NASA Hot Section Technology (HOST) program,
which has sponsored this work, is the investigation and development of
improved durability models for gas turbine hot section alloys. This broad
activity addresses the durability issue considering both crack initiation and
crack propagation of traditional isotropic (polycrystalline) and anisotropic
(single crystal and directionally solidified) materials.

In application, many hot section components are coated to prevent
oxidation and corrosion damage (e.g., combustors and turbine vanes and
blades). Traditionally, coated thermomechanical fatigue 1ife prediction
methods applied to those components simply correlated coated specimen lives
without regard to coating/substrate interactions. Although the significant
effect of coatings on component thermomechanical fatigue 1ife has been
established (References 1-9), little experimental or analytical work has been
conducted to evaluate the coating constitutive behavior necessary to provide
input to a coating cracking 1ife prediction model.

In this paper, the application of four constitutive models: (1) Classical,
(2) Walker isotropic, (3? simplified form of Walker isotropic, and (4) the
Stowell equation to NiCoCrAlY overlay coating behavior is presented.
Initially, the models are applied to a baseline data set which represents
typical low and high temperature tests conducted to obtain model constants.
Next, each model is used to predict a thermomechanical cycle verification data
set. To facilitate model-to-model comparisons, an identical baseline data set
and automated material constant regression technique was used for each model.
Standard deviation between the observed and calculated coating stress was used
as the quantitative comparison criteria for the baseline data. Finally, a
simple two-bar mechanism analysis of a coating/substrate composite structure,
exposed to an out-of-phase thermomechanical cycle, is presented to demonstrate
the vast dissimilarity between coating and substrate behavior.
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Material and Test Specimen Descriptions

NiCoCrAlY + Si + Hf (PWA 286) is a typical vacuum plasma sprayed overlay
type coating used to provide oxidation protection of gas turbine airfoil
superalloys. Overlay coatings are easily distinguishable from diffusion type
coatings in that virtually no interfacial diffusion zone occurs as a result of
the application process. Due to that fact and also the small grained structure
of overlay coatings in general, PWA 286 is considered isotropic in the plane
of the airfoil surface. As such, bulk specimens were considered useful in
determining overlay coating constitutive behavior.

The PWA 286 tested in this research effort was obtained in powder form,
hot isostatically pressed (HIP) into an ingot, and then heat treated per
normal engine hardware specifications. Constitutive specimens for both
isothermal and thermomechanical experiments were then machined from the ingot .
into the geometry presented in Figure 1. In general, the airfoil applied
coating contains some porosity near the coating/substrate interface region
which was not observed in the specimen due to the HIP fabrication process.

Test Facility

The test facility used for the isothermal baseline tests included a
servo-controlled, closed loop screw driven testing machine with set point
controllers, an electrical resistance clamshell furnace, and a thermocouple
for temperature monitoring. Axial deflection measurement was accomplished with
a capacitance type extensometer. The extensometer specimen contact arms were
placed into small dimples located at the gage section extremities.

The test facility used for the thermomechanical verification test included
a servo-controlled, closed loop hydraulic testing machine with MTS
controllers, a 7.5 kW - 10 kHz TOCCO induction heater, and an Ircon infrared
radiation pyrometer for temperature measurement. Axial deflection measurement
was accomplished with an MTS extensometer. The extensometer quartz rods, which
define a one-inch gage section, are spring loaded against the specimen and did
not show any signs of slippage during testing.

Baseline Data

The baseline data consists of isothermal stress relaxation experiments of
the sort shown schematically in Figure 2. Although the baseline tests were
conducted at several elevated temperatures spanning the operating range of
1000-2000°F, the present discussion is limited to the 1000°F and 1800°F data
which is representative of Tow and high temperature behavior. The data from
these two experiments are presented in Figure 3. Similar information at other
temperatures is available in Reference 1.
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Candidate Constitutive Models

For the sake of simplicity, only the one-dimensional forms of the models
that were used to correlate the uniaxial data are discussed. Expanding the
models into three-dimensional forms required by nonlinear finite element
computer codes was considered unnecessary until such time that the most
promising candidate model is chosen for continued development.

o Classical

The classical approach (e.g., Reference 10) was one of the first attempts
at developing a nonlinear model which recognized the observed dissimilarity
between monotonic tensile and creep inelastic material response. Time
independent inelasticity (plasticity) and time dependent inelasticity (creep)
are considered as uncoupled components of the total inelastic strain.

€in = ep + €c (1)
Thus, the total strain function, neglecting thermal strain, is written:

v = +t e toe (2)

or

€y = o/E *+ f(o) * glo,t) (3)
Both plastic and creep strain functions f(o), g(o,t) are chosen to provide
adequate duplication of the material behavior. From tests of PWA 286, it was
determined that both functions could be described by simple power law
relationships:

A A,-1
df = rz (i—) 2 do (4)
1 1
A

o MWalker

The Walker model (Reference 11) is among a new generation of constitutive
models based on a unified viscoplastic approach which considers all nonlinear
behavior as time dependent inelasticity. No distinction is made between
plastic and creep inelastic action as in the Classical mode]..Walker, from his
earlier work on Hastelloy X, chose to express inelastic behavior by a power
law relationship which can be written as:

n
. -0 :
&in < (EK_') (6)
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where n is a constant and ), back stress, and K, drag stress, are strain
history dependent internal state variables which describe kinematic and
isotropic cyclic hardening, respectively.

The back stress term is a quantity which physically corresponds to the
asymptotic stress state under relaxation conditions. Qualitatively, the
evolutionary expression for back stress is a sum of opposing hardening and
thermal and dynamic recovery components which can be characterized as:

f): f (éin’ Ein, T, t) i g (éin,(), T’ t) (7)

Drag stress is a quantity which represents a resistance to inelastic flow, and
is considered a function of the effective strain, eip eff.

K = Kl - KZ eXP ('"7 Ein eff) (8)
where: K1 = fully hardened/softened drag stress
K1 - K2 = initial drag stress.
Thus, the drag stress function is a monotonically increasing relationship

describing isotropic hardening (K2>0) or softening (K2<0). The Walker
model form used for this investigation is given below:

Gow gt Ry (9a)
~\N
o = (52) (9b)
K = Kl - K2 eXp (‘"7 Ein eff) (9C)
Q = nl Ein +()2 (9d)
. . : 1 M1 odr

(o= 55p - (Gz‘m_aT‘ i (9e)

. . (my-1) g
Gy = Ng €ip eff ¥ M0 22 (9f)
Sin eff = |inl (99)

References 11 and 12 provide a detailed discussion of Walker's and other
unified approaches. ‘
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o Simplified Walker

This model is identical to the Walker model except that all back stress
terms were eliminated.

= (o/K)" (10)

the expression for €in is equivalent to the Classical model power law creep
equation; however, in this case, the drag stress term, K, is not a constant,
but an evolutionary variable. From a simplicity standpoint, this model is very
attractive.

€in

o Stowell

_ The Stowell model (References 13 through 15) is another form of a unified
viscoplastic approach initially developed to simulate heating rate effects on
yielding of metals. It considers inelastic action based on an apparent
activation energy level and uses a hyperbolic sine stress function.

éin = 2s T exp (:ﬁ#-) sinh (%—) (11)

(¢

Verification Data

Qualitative evaluation of the predictive capabilities of the candidate
constitutive models was accomplished by application to verification data
consisting of an out-of-phase thermomechanical waveform. Thermomechanical
cycles include complex material behavior such as stress relaxation and
plasticity which is useful for exercising the models. The out-of-phase cyclic
condition is of particular interest in that such conditions are typical of gas
turbine airfoil external surfaces where many thermomechanical fatigue cracks
originate in the coating.

Correlation of Baseline Data

Baseline data correlation by each candidate constitutive model is
presented in Figures 4 and 5, and a summary of the corresponding standard
deviations is given in Table I. The material constants for each model obtained
from the baseline tests are presented in Table II,
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As expected, the Classical model regression indicated that plasticity
dominates the inelastic response at low temperature while creep dominates at
high temperature. The Walker and Simplified Walker models correlate the data
similarly. It seems that the added complexity of incorporating back stress is
unnecessary for modeling this isothermal data set. The Stowell model
correlated the baseline information the poorest.

Based on standard deviation and the given baseline data set, the candidate

constitutive models can be listed in order of correlation capability as
follows: (1) Walker, (2) Simplified Walker, (3) Classical, and (4) Stowell.

Prediction of Thermomechanical Verification Data

Experimental and predicted thermomechanical fatigue (TMF) waveforms are
presented in Figure 6.

The high temperature response of the TMF cycle was fairly well predicted
by all the models, but none were able to predict the extent of the low
temperature tensile inelasticity. In fact, only the Walker and Classical
models managed to predict any low temperature yielding. The Simplified Walker
and Stowell models predicted thermoelastic tensile responses.

The ability of the Walker model to predict the observed tensile yielding
trend can be explained as follows: during the compression/heating portion of
the cycle (points A to B), the material relaxes, creating a compressive back
stress. Then, during the tensile/cooling portion of the cycle (points B to C),
the back stress moves deeper into compression due to temperature rate effects.
Thus, the "effective" stress (o-Q), at which yielding initiates, occurs at a
lower applied tensile stress.

The ability of the Classical model to predict some low temperature
yielding reflects the fact that this model did not reproduce the observed Tow
temperature yielding trend. Had the Classical model correlated the 1000°F
behavior better, it is felt that the low temperature tensile portion of the
TMF prediction would have been more like the Simplified Walker and Stowell
models...thermoelastic.

Simulation of Coated Superalloy Constitutive Behavior

A simple one dimensional two-bar mechanism simulation of coating and
substrate constitutive behavior was performed to help visualize the coating
response to TMF cycling as would occur on an airfoil. A schematic of the
two-bar mechanism and the predicted results are presented in Figure 7.

A thermo-elastic creep model was used for the PWA 1480 <00l> and the
Walker model was used for the PWA 286. Note that the mechanical strain range
of the PWA 286 is 0.25 percent higher than the PWA 1480 substrate. This is due
to the thermal growth and strength characteristics of both materials. Upon
Toad reversal, high stress and plasticity are generated in the coating as the
structure is cooled.
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Summary and Conclusions

Four candidate coating constitutive models were evaluated based on the
ability to correlate a baseline data set consisting of isothermal stress
relaxation experiments. The four models presented can be ranked as
follows: (1) Walker, (2) Simplified Walker, (3) Classical, and (4) Stowell
based on the standard deviation of the correlation.

An out-of-phase thermomechanical cycle was used to evaluate the four
candidate models. Although none of the models accurately predicted the TMF
cycle, a back stress formulation such as is incorporated in the Walker
model is considered necessary to duplicate the observed material behavior.

A one-dimensional two bar mechanism was utilized to calculate PWA 286
coating behavior on a PWA 1480 <001> substrate during out-of-phase
thermomechanical cycling. The coating was predicted to have significantly
larger mechanical strain range and reverse inelasticity than the PWA 1480
substrate.
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Watker

Simplified
Walker

Classical

Stowell

Summary of Constitutive Model Regression Fit
Standard Deviation (1 std dev., in psi)

1000°F

2000

2041
2255
6541

Table I

1400°F 1600°F
1815 633
1n7 876
1878 736
2091 1044
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1800°F 2000°F
153 101
220 119
300 127
377 140
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K2

Simplified
Walker

Stowell
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TABLE II

Summary of Constitutive Model Regressed Temperature
Dependent Material Constants

1000°F 1400°F 1600°F 1800°F 2000°F
. 185E8 .1E8 .8E7 .3E7 .1E7
26 .85 3.318 2,240 2.036 1.649
1617.0 704.6 806.0 1316.0 1573.0
2369.0 1202.0 2653.0 1900.0 184.3
253.3 58.5 131.7 38.87 113.7
.2389E-4 . 1469E-3 .5504E-3 .2184E-3 . 1340E-3
.4955E7 .4006Eb .5625E6 .7500E5 .3312E5
1.2 1.2 1.2 1.2 1.2
. 1736E6 .5845E6 .5410E6 .2053E6 . 1435E6
.3315E5 .2048E6 .3624E6 -.1094E4 -.4711E5
29.57 3.554 3.424 3.295 3.295
787.7 770.4 405.3 100.6 156.0
. 1865E6 .5164E6 . 1545E6 .5044E5 . 1408E5
.4351E5 .2302E6 .4906E5 .2370E5 .5820E4
.3054E6 .5153E6 .3325E6 .8385E5 .4753E5
7.579 2.711 2.026 2.261 2.183
.7778E6 .4885E6 . 1928E6 .4861E5 .8368E4
7.325 3.627 3.207 3.214 3.909

.T1156E-11 .7814E-10 .1529E-9 . 1262E-8 .7478E-9
.2198E7 .4471E6  .3640E6 . 1668E7 121E7
. 1376E5 4971. 1682. 681.6 191.3
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Figure 1 PWA 286 Stress Relaxation Specimen Design
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Figure 2 Typical Isothermal Stress Relaxation Experiment
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NON-ISOTHERMAL ELASTOVISCOPLASTIC ANALYSIS OF PLANAR CURVED BEAMS?'

G. J. Simitses* R. L. Carlson** and R. Riff*
Georgia Institute of Technology
Atlanta, Georgia 30332

The paper focuses on the development of a general mathematical model
and solution methodologies, to examine the behavior of thin structural
elements such as beams, rings, and arches, subjected to large
non—-isothermal elasto-viécoplastic deformations. Thus, geometric as well
as material—-type nonlinearities of higher order are present in the
analysis.

For this purpose a complete true abinito rate theory of kinematics and
kinetics for thin bodies, without any restriction on the magnitude of the
transformation is presented. A previously formulated elasto-thermo-
viscoplastic material constitutive law is employed in the analysis.

The methodology is demonstrated through three different straight and
curved beams problems. Moreover importance of the inclusion of large

strains is clearly demonstrated, through the chose applications,
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1. Introduction

The prediction of inelastic behavior of metallic materials at elevated
temperatures has increased in importance in recent years. The operating
conditions within the hot section of a rocket motor or a modern gas turbine
engine present an extremely harsh thermo-mechanical environment. Large
thermal transients are induced each time the engine is started or shut down.
Additional thermal transients from an elevated ambient occur, whenever the
engine power level is adjusted to meet flight requirements. The structural
elements employed to construct such hot sections, as well as any engine
components located therein, must be capable of withstanding such extreme
conditions. Failure of a component would, due to the critical nature of
the hot section, lead to an immediate and catastropic loss in power and
thus cannot be tolerated. Consequently, assuring satisfactory long term
performance for such components is a major concern for the designer.

Traditionally, this requirement for long term durability has been a
more significant concern for gas turbine engines rather than rocket motors.
However, with the advent of reusable space vehicles, such as the Space
Shuttle, the requirement to accurately predict future performance following
repeated elevated temperature operations must now be extended to include
the more extreme rocket motor application.

Under this kind of severe loading conditions, the structural behavior
is hightly nonlinear dut to the combined action of geometrical and physical
nonlinearities. On one side, finite deformation in a stressed structure
introduces nonlinear geometric effects. On the other side, physical
nonlinearities arise even in small strain regimes, whereby inelastic
phenomena play a particulary important role. From a theoretical

standpoint, nonlinear constitutive equations should be applied only in
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connection with nonlinear transformation measures (implying both
deformation and rotations). However, in almost all of the works in this
area (See Ref. 1), the two identified sources of nonlinearities are always
separated. This separation yields, at one end of the spectrum, problems of
large response, while at the other end, problems of viscous and/or
non—-isothermal behavior in the presence of small strain.

The classical theories, in which the material response is
characterized as a combination of distinct elastic, thermal, time
independent inelastic (plastic) and time dependent inelastic (creep)
deformation components cannot explain some phenomena, which can be observed
in complex thermo—mechanical loading histories., This is particularly true
when high-temperature non-isothermal processes should be taken into account.
There is a sizeable body of literature'»2 on phenomenological constitutive
equations for the rate - and temperature - dependent plastic deformation
behavior of metallic materials. However, almost all of these new "unified"
theories are based on small strain theories and several suffer from some
thermodynamic inconsistencies.

In a previous paper3, the authors have presented an alternative
constitutive law for elastic-thermo-viscoplastic behavior of metallic
materials, in which the main features are: (a) unconstrained strain and
deformation kinematics, (b) selection of reference space and configuration
for the stress tensor, bearing in mind the rheologies of real
materials, (¢) an intrinsic relation which satisfies material objectivity,
(d) thermodynamic consistency, and (e) proper choice of external and
internal thermodynamic variables. Accuracy of the formulation was checked

on a wide range of examples“.
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The formulation presented in this paper focuses on a mathematical
model to examine the behavior of thin structural elements subjected to
large non-isothermal elasto-viscoplastic deformations. Thus, geometric as
well as material-type nonlinearities of higher order are present in the
analyses. Such thin elements, including beams, rings and arches, are
intended to present generic types of components, which might be located
within or adjacent to the hot section of a rocket motor or gas turbine
engine.

The rate form of the constitutive equations suggests that® a rate

approach be taken toward the entire problem so that flow is viewed as

history dependent process rather than an event. A direct consequence of
the consistent adoption of the rate viewpoint in a spatial reference frame
is that the probiem is found to be governed by quasi-linear differential
equations in time and in space. Hence, the analysis requires solution of
an initial- and boundary- value problem involving instantaneously linear
equations. The quasi-linear nature of the problem not only suggests an
ineremental approach to numerical solution, but also provides confidence in
the completeness of the incremental equations. 1In this case, finite
element solution capability is established; it should be noted, however,
that the linearity of the instantaneous governing equations admits use of a
wide variety of other established numerical procedures for spatial
integration. A complete true ab initio rate theory of kinematics and
kinetics for continuum and double curved thin structures, without any
restriction on the magnitude of the strains or the deformation was
formulated in Ref. 4 and will be rephrased here.

Formulation of problems concerned with finite deformation of beams has

followed two different paths6. Prescribing the beam by its deformed or
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undeformed centroidal axis and cross section, one may introduce at the
outset beam stress resultants and their conjugate kinematic variables
characterizing displacement and rotation of the cross section. Together
Wwith appropriate beam constitutive equations and a global balance law a
consistent theory is obtained. Alternatively, one may imbed beam theory in
the setting of deformable solid continua, in which case one 1s concerned
with local constitutive equations connecting the stress tensor with a
strain tensor, which may in turn be expressed in terms of a combination of
undetermined beam kinematic variables and functions of the beam coordinates.
Momentum may then be balanced globally by integrating the local equations
over the deformed beam configuration. Both paths will be considered in
what follows,

2. Two-Dimensional Plane Beams (A Plane Stress Problem)

2.2 - Kinematics of the Continuum

Let a continuum in space be described by two systems of coordinates,

the xi-system, which stays at rest (the fixed system) and the ua—system,

which is associated with materials points (the convected material system).

The transformation equations from one system to the other are:

dx* = fi au® (1)
o
a a i
du” = ug dx (2)
where
i
pl 2% (3)
o o
ou
a
£ L 2u (4)
i i i
X
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The covariant components of the metric tensor in the material system u®

are:

-t
£y T3 Oy (5)

8s8
where Gyj are the covariant components of the metric tensor in the fixed
system xl. For the fixed cartesian system (Euclidian space) we have,
Gij = 81y (6)

where §1j are the components of the Kronecker delta. The coordinate lines

of the xi-system are assumed to "deform"™ with the continuum in order to

enable the material points to keep their coordinates (in the ua—system)

unchanged.

The contravariant components of the velocity vector in the fixed

system are defined by:

v = em——— (7)

It is impossible to define velocity as a change in the coordinates in the
material system, however, distances are obviously changing. The length of

the elementary arc in the material coordinates is given by:
2 _ a . B
ds” = 84g du” du (8)

Defining the rates of change in the material system by _%E’ the rate of

change of the elementary arc is,

o8
0 2 - of a B
—gz(ds ) ¢ du du (9)

From Eq (9) one may conclude also that

og a B
(108 dSJ - _1_ of du du

2 3t a5 ds (10)

1 3(ds)
“ds ( dt )

9
ot
The clue for the intrinsic rates of change may be unraveled, then, by the

derivation of the rates of change of the metric tensor.
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It can be shown® that the rate of change of the metric tensor in the

materlal coordinates is given by

g
aB - i
ot VO.B Y vslc () ‘\
where
Y Yy i Y 9 i
Va8 " Bva ¥V 8 " Bya f1 V.5 " 8y, £, —5¢ (fg) (12)
9 i i X
So —3E(f8) or v 8 is the velocity in the fixed system as observed in

the material system. The components of the deformation rate tensor defined

as follows,

98
81 0B _ 1 -
dyg =375t = 2Ve,8 * Vp,0) = Y50 (13)
and the components of the spin tensor as,
wo ALy -y ) e -y (14)
o8 2" a,B Bro Ba
Substitution of Eq. (13) into Eq. (10) yields,
2 (10g ds) = d_, »°® )8 (»® = QEE] (15)
ot aB ds

As soon as the deformation’rate is established as the time derivative
of the metric tensor, the intrinsic characteristics of the continuum, being
metric properties of space, are readily differented (with respect to time).
For more details see Ref. 4,

2.2 The Rate of Global Principles

The principle of virtual power (or of virtual velocities),

13 f J J J

dav - f~ v, dv - T 8§v, dA = 0 16
J ] ij,i ] p vJ v vJ (16)
' Vv A

is equivalent to the equations of equilibrium along with the complete set
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of boundary conditions. In Eq. (16), gl are the contravariant components

of the Cauchy stress tensor, p the mass density, and fJ is a vector of

specific body forces.

Total differentiation of Eq. (16) yields®,

ij . J
j (o=, o1 g% o vhk oK) ey, | oav - j P
v

dt k j,i dt J
Vv
J . dév, . dév,
_[ 4T (13 3 I S IR
J Y at GVJdA + J "] at !’ idv J pf at dv
A \' Vv
, dév
- J y1? dtj dA = 0
A

(in

At any instant Eq. (17) must be satisfied. The virtual velocity and

its time derivative are, then, independent. Moreover, the last three terms

of Eq. (17) are equivalent to Eq. (16). Hence, the principle of the rate of

virtual power may be obtained in its concise form. For further

classifications, the total derivative of the stress components will be

represented by the Jauman derivative, namely

1j .
do vij & ki . 4 ik
gt "0 twe 0t

and the following integrals are defined by

Vij

Ie = I o GVJ,idV

\'

- ij k  _ kI i
I j (o 4", o d.k) ovy 4V
v
[y ik

Ir = I W o 6VJ,1 dv

v
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Then, substitution in Eq. (17) yields the final form of the principle of

the rate of virtual power,

J J
df dT
I-= Ie + Id + Ir = J P ~gt GVJ dv + J Y T ij dA (22)
r A
which is equivalent to
Ji . J .
do _ LK ij ar ko JJ |
ST SR AN B SR T S (23)
and
ij
alvrl) | Ao vy (24)
dt dv

A similar process can be appliedu to obtain the principle of the rate of
balance of energy from the first law of thermodynamics.

2.3 Constitutive Equations

In a previous paper3, the authors have presented a qomplete set of
constitutive relations for nonisothermal, large strain, elasto-viscoplastic
behavior of metals. It was shown there3 that the metric tensor in the
convected (material) coordinate system can be linearly decomposed into
elastic and (visco) plastic parts. So a yield function was assumed, which
is dependent on the rate of change of stress on the metric, on the
temperature and a set of internal variables. Moreover, a hypoelastic law
was chosen to describe the thermo—elastic part of the deformation.

A time and temperature dependent "viscoplasticity" model was
formulated in this convected material system to account for finite strains
and rotations. The history and temperature dependence were incorporated
through the introduction of internal variables. The choice of these
variables, as well as their evolution, was motivated by thermodynamic

considerations.
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The nonisothermal elasto-viscoplastic deformation process was
described completely by "thermodynamic state" equations. Most
investigators1t2 (in the area of viscoplasticity) employ plastic strains as
state varlables. This study3 shows that, in general, use of plastic
strains as state variables may lead to inconsistencies with regard to
thermodynamic considerations. Furthermore, the approach and formulation
employed in previous works leads to the condition that all the plastic work
is completely dissipated. This, however, is in contradiction with
experimental evidence, from which it emerges that part of the plastic work
is used for producing residual stresses in the lattice, which, when
phenomenologically considered, causes hardening. Both limitations were
excluded from this formulation.

The constitutive relation will be rephrased here as follows

i i k k 2 P
a) if F=(t -Cp_ g8t -Cop gs)-k(Wr)=0 (25)
i i Po i
where, s, the Kirchhoff stress tensor, sk = —E o and the temperature T

are independent process variables, t; being the deviator of the Kirchhoff

p
stress. si, and W and Bi are internal parameters, then
i1 v Ui R i
dk=&}v{sk—1+vsr6k}+0T6k+2L(tk—CpogBkJ (26)
J v Y
Ei Pi
dk dk
Wwith
i k k
) = {1l 7 -1} (27)
4n k2
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b) if

and

then

with

c) if

or

p
I
W= — % d
pO
v P
i i
F=0
v
OF 'i  OF
asi Sl‘< \'5,.-[:T>0
K
E
i i
d = dy
P
Py Vi ey i
d =0 d =2x(t, - Co_ g8,)
v 2
- 1 i iy 'k 3KS s
b= 2{2(t’k Co, &8t =t 1
8nk
v,
F=0 and & gl 2+ o
T %k " aT
3s
K
F <0

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)



. E.
1 1
then dk = dk (38)
P
W=0 (39)
vy
B, = 0 (40)

2.4 Plane Stress Approximation

By definition, a body is said to be in the state of plane stress
parallel to the u', u2 plane when the stress components ¢!3, ¢23, ¢33
vanish?. It is well known in literature that the case of plane stress is
difficult to handle theoretically. Even linear elasticity has to treat
this case in an approximate manner. To remove some of theoretical
difficulties Durban and Baruch® introduced the notion of Generalized Plane
Stress, where instead of dealing with the quantities themselves, one deals
with their average values,

In our case the problem is even more difficult. The nonlinearities,
which the general three-dimensional theory takes into account will also
cause a large change of the geometrical quantities in the u3 direction.
Clearly, some assumptions are needed to treat the case of plane stress as
a two-dimensional case.

The first basic assumption is that the thickness, h, of the plate
defined by the coordinates u1, u2 located in its middle plane, is small

as compared with the other two dimensions. A second assumption is that the
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external forces act in the ul, u?2 directions and are symmetrically
distributed with respect to the middle plane.

In a way similar to the procedure proposed by Durban and Baruch5, all
the kinematic expressions are obtained by averaging the three-dimensional
expressions.

A basic assumption for the case of plane stress is that the components
connected with the third direction are small and can be neglected. So, a

new concept of generalized stress tensor is introduced

i
o, h
i Kk
™ T ()
(e}

It must be noted that in the linear theory of elasticity, where the
geometry does not change, the averaged and generalized stress tensors
coincide.

So the three—-dimensional incremental elasto-viscoplastic theory,
developed previously, can be adopted for two-dimension plane stress

problems.

3. A Thin Curved Beam

3.1 Doubly Curved Element

A complete rate theory of kinematics and kinetics for doubly and
singly curved thin structures, without any restriction on the magnitude of
the strain or the deformation, was presented in Ref, 4,

Five different shell theories (approximations), in rate form, starting
Wwith the simple Kirchhoff-Love theory and finishing with a completely
unrestricted one, were considered therel,

The kinematic and kinetic equations for intrinsic shell dynamics,
introduced in Ref. 4 are presented here, in compact form, together with

basic notations. For simplicity we consider here Kirchhoff motion only8.
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The components of the velocity vector w = § are

w o=y oy, Wo=y-y% w o=y-n (42)

where n is the unit normal to y, and y is the weighted motion.

Expressions for the components of the velocity gradients, }, follow
from differentiation of Eq. (42)

daB - ya ’ yB T u’cx;B - baB wn (43)
i =ney =w _+Db_ w (44)
o B n,o o

The time rates of the components of the metric and curvature tensors
follow immediately from the above as

~ Y
3 =dgtdy o By a gt Ay By (45)

To complete the kinematics, we get the components of the acceleration
vector by time differentiation of Eq. (42) and through use of Egs. (43) and

(4h),

(46)

. . ~ o
Yy en=W_+ww
n

The accelerations form the right sides of the equations of motion. The
left sides are the static terms that can, for example, be expressed in

terms of symmetrical stress resultantsl., The result becomes

ca  —1 r=Bo . —o =B ~a —B
w m [n;B + b):B + m "+ be m;

+ p®] - % WP e % (u7)

A
8 B n
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. - - . :
4ere 27, n, m are loading components and mass, respectively, per unit area

b

A Simplified Version of Curved Beam Element

Al
.
(AN

Fig. 1 - Reference Line of a Curved Beam

4 portion of the reference line for a curved beam is shown on Fig. 1.
Tne current arc length is denoted by s, while ¢ is the current angle of
inalination of the normar to the reference line, and p is the radius of
urvagure,

The stress resultants acting on the beam cross section are the bending
1oment M, the axial force N, and the shear force Q. The external load,

7233ir2d per unit of current length of the reference line, has the components

>, in the direction of the unit vectors Es and En respectively.

451



I1f vs and vrl denote the velocity components in the direction of the

unit vectors Es and En respectively, the rate of extension is

Bvs v
d=-—a—'s""—p' (’49)

The rate of rotation, &, of a given section is given by

w=¢=—~—§+—:' (50)

M v
;;..3%=_3_( n, _s) (51)

The rate of equilibrium equations for this simplified version may be

put in the following form:

ON _ , 9 _ 236, - -
23 Q35 ~ Q s " Pg” d Pg = 0
59 % , =« 3, - _
s ' N s | N 5s = Pn " dp, = 0 (52)
%% + Q+dQ=0

4, Numerical Solution

The quasi-linear nature of the velocity equilibrium equations suggests
the adoption of an incremental approach to numerical integration with
respect to time. The availability of the field formulation provides
assurance of the completeness of the incremental equations and allows the
use of any convenient procedure for spatial integration over the domain B,
In the present instance the choice has been made in favor of a simple first

order expansion in time for the construction of incremental solutions from
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the results of finite element spatial integration of the governing
equations.

The procedure employed permits the rates of the field formulation to
be interpreted as increments Iin the numerical solution. This is
particularly convenient for the construction of incremental boundary
condition histories.

The finite element method for spatial discretization has been well
documented (see, e.g. Zienkiewicz? or 0den'0) and will not be detailed here.
It should be noted, however, that as a consequence of the present
formulation, the velocity equilibrium equations are not symmetric. This
feature precludes implementation of a Ritz procedure as commonly employed
in finite element analysis of infinitesimal deformation. Linear algebraic
equations governing the discrete model for the finite case are developed
employing the method of Galerkin.

The spatial discretization results in:

[k] {v} = {&} (53)
where [K] is the nonsymmetric stiffness matrix, {v} is the vector

containing the generalized nodal velocities, and {R} is the rate of the

load. The solution to Egq. (53) at time to provides a basis for evaluation
of a deformation increment and associated changes in internal stresses and
boundary loading. The incremental solution defines the deformed
configuration and stress rate at t = t5 + §t thereby permitting definition
of a new spatial problem at the later time.
5. Applications

The capabilities of the models presented here in have been evaluated

through three simple numerical examples. The first example demonstrates

the capability of the plane stress approximation to predict deflections and
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23 in a »eam loaded by a constant moment. Figure 2 illustrates the

ALy
i

=23
21 and tae “ilnite element model, A quarter of the beam was divided into
Tl 2l272nts3 in the vertical direction and into five elements in the
.rizontal lirection. The external moment was introduced by six parallel
fyroes azting on tne section BC (see Fig. 2).
n2 value of the external moment is 3500 kg/cm, and the material of
Tne 9z2am 13 THR-17. The viscoplastic properties of the material were
sotained experimentally from uniaxial tests in Ref. 1. This properties
<272 20.1laborated into the present material model.
The variation of the deflection of point E as a function of time is
ivan Ia Fig. 3. It is important to point out the value of the large

cefzrmation analysis. After ten minutes of the deformation is increased by

-2% 4rn o3t tne same time there are important changes in the stress field

.

( D-——-—--————-——-—-—-————————-—i
G

F'e

BYVVY B

m

I

Fiz. 2 - The Beam Model
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—— — «fusuei; %10

oo — G
— —— *§22
3

G4

10
1 66
5 1
1 i
[} i | | o
oo : 2 3 4 5 6 n ;

Fig. 4 - Stress Distribution
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The next example consists of a straight simply supported beam, loaded
by a transverse concentrate force at the midspan. The beam is 25 inches
long, two inches high and one inch wide. The material is stainless steel
304 (Heat 9T2796). The material constants in sub section 2.3 were
correlated with the uniaxial tension experimental results given in Ref. 12.
The beam was subjected to a load of 2000 pounds at 1100°F, this load was
then held constant for 312 hr., and then increased to 2250 pounds at
1400CF.

The primary purpose of this example is to compare the results,
obtained by the two previously discussed models, The first one is the
two—dimensional plane stress model, and the second one is the thin beam
model as derived from thin shell theory. Figure 5 presents results in the
form of load versus midspan deflection. The finite element model consists
of five simple plane stress elements (dashed line in Fig. 5) or five
sophisticated beam elements (full line in Fig. 5).

It can be seen (Fig. 5) that the results agree quite well up to the
312-hour hold period (points 3,4). During the hold period, the material
hardens and only the beam model can represent this behavior after the load
is further increased.

The last example presents an analysis of a circular arch. The
geometry of the shallow circular arch is shown on Fig., 6. The material is
once again the 304 stainless steel. The arch is fixed at both ends and
carries a concentrated load at the center. The elasto-viscoplastic
analysis of this arch is performed with the aid of a ten curved beam elment
model and with the inertia terms taken into account. The load P is assumed
to be applied in a quasi-static manner at t = 0. The results of this

analysis are shown on Fig. 6, as the time-history of the midspan
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displacement., The response of the arch starts with the instantaneous
elastic deformation at t = 0, followed by slow deformation up to point B,
which can be considered as a limit point for the given value of the load P.
Beyond point B, the displacements increase rapidly towards point C. This

may suggest the existence of critical time for the prescribed load.
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EFFECTS OF STATE RECOVERY ON CREEP BUCKLING UNDER VARIABLE LOADING

D.N. Robinson* and S.M. Arnold¥
University of Akron
Akron, Ohio 44325

Structural alloys embody internal mechanisms that allow recovery of state
with varying stress and elevated temperature; that is, they can return to a

softer state following periods of hardening. Such material behavior is known

to strongly influence structural response under some important thermomechani-
cal loadings; for example, those involving thermal ratcheting. Here, we inves-
tigate the influence of dynamic and thermal recovery on the creep buckling of

a column under variable loading. The column is taken as the idealized (Shan-
ley) sandwich column. The constitutive model, unlike the commonly employed
North creep model, incorporates a representation of both dynamic and thermal
(state) recovery. The material parameters of the constitutive model! are chosen
to characterize Narloy-Z, a representative copper alloy used in thrust nozzle
liners of reusable rocket engines. Variable loading histories include rapid
cyclic unloading/reloading sequences and intermittent reductions of load for
extended periods of time; these are superimposed on a constant load. The cal-
culated results show that state recovery significantly affects creep buckling
under variable loading. Failure to account for state recovery in the constitu-
tive relations can lead to nonconservative predictions of the critical creep-
buckling time.

INTRODUCTION

The influence of dynamic and thermal recovery on the high temperature
behavior of structural alloys is well recognized (refs. 1 and 2). (See figs. 1
and 2.) For example, recovery is believed to play a major role in one of the
central structural problems relating to 1iquid metal breeder reactor design,
the problem of thermal ratcheting. Failure to account for recovery effects in
structural analyses involving repeated thermal transients has been shown to
give qualitatively incorrect and nonconservative predictions of ratcheting in
some instances (ref. 3). Special provisions for taking recovery into account
(e.g., the so called a-reset procedure (ref.4)) are now finding their way
into documents guiding structural analysis in the U.S. nuclear industry. The
effects of thermal ratcheting have also been observed in thrust nozzle liners
of reusable rocket engines.

A second area in which recovery effects are thought to play a primary
role, and one that impacts essentially all high temperature system design, is
that of creep crack growth under creep-fatigue (variable stress) conditions.

*NASA Lewis Resident Research Associate.
TNow at NASA Lewis Research Center.
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Creep (state) recovery is believed to be one of the main causes of acceleration
of crack growth in the creep regime and under variable loads. A study by Kubo
(ref. 5), using the same constitutive relations (refs. 2 and 6) employed in

the present work, shows that the experimentally observed acceleration of creep
cracks under variable stress can be predicted through the inclusion of appro-
priate mechanisms of recovery in the constitutive relations.

In this paper we discuss a third area of mechanics in which recovery is
expected to have significant influence, that is the problem of creep buckling
under variable loading. The presence of mechanisms of recovery can allow creep
strain rates to increase following periods of hardening and thus cause acceler-
ation of creep buckling. Load reversals may be accompanied by dynamic recovery
as in figure 1, and load reductions by thermal recovery as in figure 2; in
either case, creep rates are increased upon reloading, which tends to reduce
the critical time to buckling.

In the vast majority of creep-buckling studies the constitutive model used
has been of the Norton type (refs. 7 to 9) wherein the (steady state) creep
rate is taken as a function of stress and temperature alone. Some investiga-
tions have made use of hardening theories (refs. 10 to 12) that include a pri-
mary creep phase. However, these theories do not generally allow for inelastic
state recovery and, consequently, for rejuvenation of primary creep. These
constitutive theories are adequate in the case of constant loading but may sig-
nificantly over predict the time to buckling under certain types of variable
loading.

Here, we examine the elevated temperature creep-buckling problem under
variable loading using the simple Shanley model (ref. 13) of a column but with
a constitutive model (refs. 2 and 6) that embodies a representation of both
dynamic and thermal recovery. The constitutive model is that developed princi-
pally by Robinson at Oak Ridge National Laboratory and NASA Lewis Research Cen-
ter; and that used by Kubo in studies concerning creep crack growth.

The present study was motivated partly by the occurence of what appears
to be local ratcheting-buckling failures in the throat liner of the main thrust
nozzles of reusable rocket engines, notably the NASA Space Shuttle main engine.
For that reason the material parameters used in the constitutive equations are
chosen to represent a copper alloy, Narloy-Z, which is typical of materials
used in rocket engine thrust nozzle liners.

We shall first state the constitutive model and, secondly, specify the
geometry of the Shanley column model. MWe then investigate creep-buckling
behavior under constant loading; cyclic loading which includes relatively rapid
load reductions and reversals (dynamic recovery); and cyclic loading which
includes intermittent reductions of load for extended periods of time (thermal
recovery). Some of the calculations, using a roughly equivalent Norton type
creep model, are repeated for comparison. Some physical aspects associated
with the constitutive model are discussed along with the results. Finally, we
state the conclusions drawn from the study.

THE CONSTITUTIVE THEORY

We make use of the constitutive law reported in references 2 and 6, which
gives the complete multiaxial statement of the model. Here, we state the model
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in uniaxial terms together with the corresponding parameter values appropriate
for the copper alloy Narloy-Z.

Flow law:

AFMsgn(o-a); F > 0 and o(o-a) > O
0 y F<Oor F>0 and o(o-a) <O

Evolutionary law:

Ho P Rlalm'Bsgn @ @ >ay and oa > 0
) 1
o = (2)
—ﬂﬁ P - Rag'Bsgn @, « Lay OF o0
o
0
in which
2
F o (o—g) -1 (3)
K
and
A = 1.60x10-8
n =4
m = 8.73
B = 1.07x10-6 (T2) + 1.60
k2 = 209.6 - 0.20(T) (4)
H = 1.46x107
R = 1.06x10-7
ay = 0.2

Also, eP indicates the inelastic strain rate in hr-! and o, the applied
uniaxial stress in MPa. In the general form of the theory, x (MPa) is a
Bingham-Prager threshold stress playing the role of a scalar state variable;
here it is taken to have the constant value given above. For present purposes,
a (MPa) is the single inelastic state variable. It represents the uniaxial
component of a tensorial state variable (internal stress) that appears in the
multiaxial formulation of the theory. The minimum attainable value of |a| s
apg which plays a primary role in the representation of dynamic recovery. (See
Discussion.) The remaining parameters, in some cases functions of temperature
(T), are consistent with the units MPa, hr, and degrees Kelvin. The elastic
response is characterized by a linearly temperature dependent Young's modulus
E (MPa) given by

E = 1.47x10% - 70.5(T) (5)
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Equations (1) to (4) incorporate both dynamic and thermal recovery and there-
fore are capable of predicting the type of behavior illustrated in figures 1
and 2.

The parameter values for Narloy-Z were determined from uniaxial tensile
and stress relaxation test data. Because the complete data base normally
required to characterize a particular alloy by using the present constitutive
theory was not available, the tensile and relaxation data had to be considered
sufficient.

Tensile data were found (ref. 14) over a wide temperature range (~30 to
811 K) but at only a single strain rate 0.002/sec. Limited stress relaxation
data (ref. 15) were found at the temperature 811 K (1000 °F); these were used
in the absence of creep data. The most serious data deficiency in the present
context is the lack of tests giving a direct measurement of recovery effects;
that is such tests as strain or stress transient dip tests or open loop cyclic
tests involving partial stress reversals. Nevertheless, it is believed that
the material characterization is adequate for a reasonably quantitative study
of creep-buckling behavior under variable stress.

Figure 3 shows a comparison of the tensile data with predictions based on
equations (1) to (4). Figure 4 similarly compares typical relaxation responses
with a prediction. Neither figure is intended as a demonstration of the pre-
dictive capability of the constitutive model but simply as an assessment of
correlation with existing data. The predictive capability of the constitutive
theory has been adequately demonstrated relative to other alloys in earlier
publications (refs. 2 and 6).

THE SHANLEY COLUMN

The column model adopted here is the sandwich idealization introduced by
Shanley (ref. 13) and used by Kachanov (ref. 16) and others. The column geome-
try is indicated in figure 5. All of the deformation is presumed to occur in
the slender bar elements 1 and 2 of length h and cross sectional area A/2.
The remainder of the column of length L (L>>h) remains rigid. The width of
the column, that is, the distance separating bars 1 and 2, is also taken as h.

The column is loaded by a time dependent load P(t) (shown positive); the

lateral displacement of the load point at any time is denoted by u(t). The
stress and total strain in bars 1 and 2 are denoted by 91 9y, and e, = 5]/h

and e, = 82/h, respectively.
Equilibrium requires that
0y + 0y = 200 (6)

and

N

where 9 = P/A.
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Differentiation with respect to time provides the rate form of the equi-
librium equations,

0, + 0p = 200 (8)
and

% "9 = h

u
oy + 4°0h (9

From geometric considerations (fig. 5) the compatibility condition is
obtained as

10)

or

an

in which ug 1is the initial displacement (imperfection). The rate form of the
compatibility relation is

Decomposing the total strain rates in each bar into elastic and inelastic
contributions gives
o
s -, P
ey = F + g (13)
(o)
s .2, P
&, =F + & (14)
where E is the Young's modulus as specified in equation (5). The inelastic

strain rates é? and ég are, of course, obtained by applying the inelastic
constitutive equations (1) to (4) to each bar.

Combining the equilibrium equations (8) and (9), the compatibility equa-
tion (12), and the constitutive relationships (13) and (14) leads to

—

: 4L . 4L 2u) 2L ‘P _ P
9 (l * TR °0> = 0y (l *Eh % " h ) - h % (e] - e2> 15
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Under constant compressive stress (i.e., 9 < 0 and 60 = 0), and in the

absence of inelasticity (é? = ég = 0), equation (15) gives the Euler critical

stress for the idealized column as

Eh

oc = aL (e
Further, calling
(¢}
p =22 an
o
and
n = %9 (18)

where n is termed the nondimensional displacement, we have from equation (15)

o4

.0 o E (p_-p
N =T+, O+p-n - T+ p 2 (e] - 92) a9
Now, from equation (6)
02 = 200 - C] (@40))

and from equations (12), (13), (14), and (18)

_E_°_1p°_2p
n = 2°c (E *eE] - F - & 21

The coupled system of equations (1), (2), (3, (19, 20>, and (21)
together with the appropriate initial conditions, including the initial imper-
fection n, = n{(0), allow the (nondimensional) displacement n(t) to be calcu-

lated for a specified temperature T, Euler critical stress Ocs and history of
loading oo(t). The results of several such calculations for various loading
histories are presented in the following section.

RESULTS

A1l of the calculated results are isothermal with the temperature taken
to be 811 K (1000 °F). The Euler critical stress o is 200 MPa and the load-
ing/unloading ramp rate I&OI is 96 MPa/sec. The governing system of equations
was integrated using a self-adapting Adams-Bashfcrth predictor-corrector method
with a fourth-order Runge-Kutta method as a starter. The calculations were
perforTed in double precision on a Prime 850 computer with an upper error bound
of 10-%.
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In all cases, the criterion defining the critical time to buckling t¢ is
taken as

2u _
n=ga (22)

o) = 0 (23)

that is, the stress in bar element 1 becoming zero.

Behavior Under Constant Load

In all calculations the compressive load is first applied from zero, where
the deforming elements are considered in a virgin state (i.e., @ = a, ® 0, to

a nominal value of the applied stress (oo = P/A) of -35 MPa. Thus, with the
Euler stress o = 200 MPa the nominal value of the ratio p (eq. (17)) is

[
0 _ =35 _
P o " 700 - -0.175 (24)

In this section we present the calculated results for a constant load o
held at the above value. Figure 6 shows a response n(t) under these condi-
tions for four different values of initial (nondimensional) displacement ng =

0.02, 0.05, 0.10, and 0.2. The time =t = t/tg in figure 6 is nondimensional,
being normalized with respect to the critical time corresponding to ng = 0.02;

that is, tg = 6 hr.

Figure 6 shows that the critical time to buckling is reduced by a factor
of almost 8 with an order of magnitude increase in the initial displacement.

For the sake of comparison, all subsequent calculations are taken to have
the initial imperfection ng = 0.02 and are presented in terms of the nondimen-

sional time =< = t/tp.

Behavior Under Variable Load

We first consider the effect of rapid load reductions and reversals super-
imposed on the constant load o, = -35 MPa (p = -0.175). As shown in the |

inserts of figure 7, load interruptions occur at time intervals of <, = 0.15

with varying amplitude. These include reductions (in the tensile direction)
of % to -20 MPa and to 0 MPa (insert (a)), to +20 MPa (insert (b)), and a
complete reversal to +35 MPa (insert (c¢)). The calculated effects of these
histories on the creep-buckling response n(t) are shown in the respective
curves (a), (b), and (c) of figure 7.
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Curve (a) corresponds to the loading histories indicated in insert (a);
reductions to -20 and O MPa. The response curve for each is identical to that
of figure 6 for the same initial displacement 0.02, thereby indicating that no
change in the buckling response has occurred. Response curve (b) corresponds
to insert (b) in which there is a load reversal to o, = +20 MPa. Here, we

begin to see a measurable change in the calculated creep-buckling response,
the critical time having diminished from the constant load case by about

10 percent. Finally, in curve (c) we observe a reduction of more than 30 per-
cent in the time to buckling. This corresponds to the history of insert (c)
where a complete load reversal from 9y = -35 MPa to oy = +35 MPa occurs at

each load interruption. Immediately following each reversal, we see evidence
of the reappearance of primary creep. This is attributed to the presence of
dynamic recovery (fig. 1) where creep (or relaxation) is observed to be accel-
erated with stress reversals — even in the absence of significant reversed
inelastic strain. Although, to the knowledge of the authors, these effects
have not been observed directly in creep-buckling phenomena, it is expected
that such effects can occur, on the basis of the experimental observations
illustrated schematically in fiqure 1.

The influence of dynamic recovery is best understood by considering the
state space (o,a) of figure 8. Note that in figure 8 and all subsequent repre-
sentations of the state space, compressive o and o« are shown as positive
and are plotted upward and to the right, respectively. Hereafter, the relevant
quadrants of the state space will be referred to as the first (oa > 0) and the
fourth (oa < 0). In figure 8 the trajectory of the state point (02, az) for

bar element 2 is shown corresponding to the constant load response curve (a)
in figure 6. The segment OA traces the path of the state point during initial
load-up to o9 = -35 MPa. Some inelasticity is indicated over path OA by the

increase in the inelastic state variable «,. As % is held constant, bar 2

creeps under nearly constant stress, and the state point moves toward B. As
the geometric nonlinearity becomes prevalent, the stress in bar 2 increases (as
that in bar 1 decreases), and the state point moves toward C. Point C corre-
sponds to the buckled condition n = 1 in figure 6 (curve (a)).

Similarly, figure 9 shows the trajectory of the state point for the load-
ing histories illustrated in insert (a) of figure 7; load reductions to o =

-20 MPa and to 9 = 0. Here, we see the effect of the abrupt load changes as

vertical (elastic) trajectories in the state space, resulting in no overall
change in the state path OABC from that just considered for a constant load.
This, of course, results in the same creep-buckling response observed earlier
for the constant load.

The state path of figure 10 relates to the loading history of insert (b)
in figure 7. Here, we begin to see evidence of state recovery. The load vari-
ations now produce stress reversals in bar 2 and the state point trajectories
are not simply vertical (elastic) lines as before, but now follow curved paths
as the state point penetrates into the fourth quandrant (oca < 0) corresponding
to a reversal of stress. The state recovers with the stress reversal, result-
ing in a relatively softer state (smaller az) upon reloading. Correspond-

ingly, the creep rate is increased in response to each load cycle. Evidence
of increased creep rate following reloading is apparent in curve (b) (fig. 7).
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Load histories involving larger stress reversals produce increased state
recovery. Figure 11 shows-the state path in bar 2 for the fully reversed load
depicted in insert (c) (fig. 7). In figure 11, the effect of dynamic recovery
at each unloading/reloading cycle returns the state point well back into the
primary creep regime. As observed earlier, clear evidence of the rejuvenation
of primary creep after each loading cycle is seen in curve (c), with the total
effect of diminishing the critical buckling time by about 30 percent.

Since the period of application of the rapid loading cycles (x, = 0.15)
was chosen quite arbitrarily, we now investigate the effect of the grequency
of load cycles. Figure 12 shows the buckling response curves n{t) for load
histories involving a full reversal; that is, o, = -35 to +35 MPa (as in
insert (¢) fig. 7), with periods T 10/2, 10/4, and 10/8. (The constant

load response curve is also shown for reference.) We see the pronounced effect
of more frequent (shorter period) stress reversals. Reversals with period

10/8 reduce the time to buckling by more than a factor of 3.

Next, we examine the influence of load reductions of extended duration on
the creep-buckling time. The loading histories considered are shown in the
inserts of figure 13. Case a (i.e., insert (a) and response curve (a)) is
equivalent to one of those considered previously (insert (a) of figure 7),
where the time duration at the reduced load 9 = 0 is effectively zero. This
history produces no change in the buckling response over the constant load
case.

Insert (b) depicts the history where the load, having been applied for
period 1?, is abruptly removed (at a rate Iool = 96 MPa/sec) and held at zero
od

for a per Ty A time comparable to the actual critical time (z, = 6 hr) of
the column under constant load. The sequence is then repeated. This history

reduces the critical time as shown in curve (b) by about 15 percent. Here, the
time < includes only that time in which the load 9 = -35 MPa is applied.

This behavior is best visualized in the state space (02, az), fiqure 14.
State recovery is observed as, in time, the state point moves at zero stress
toward smaller a; for example, on the first load reduction from point D to
E. Reloading returns the state point to a softer state than before the load
reduction and, correspondingly, to a higher creep rate. Repetition of the
sequence thus causes acceleration of the creep-buckling process.

Insert (c) of figure 13 shows a loading history in which the time at zero
stress is now increased a hundredfold to 10011. The corresponding response

curve (c) shows a further decrease in the critical time, about 30 percent.

The related state point trajectory shown in figure 15 is qualitatively similar
to that of figure 14 but now shows significantly increased recovery with the
hundredfold increase in hold time at the reduced stress.

Comparison With Predictions by Norton Law

In this section we compare the results presented with those for identical
loading histories based on a classical creep law of the Norton-Bailey type;
that is,
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P = BoMsgn(on (25)

A roughly equivalent representation was obtained by calculating the steady
state creep rates for various stress levels using equations (1) to (4) and fit-
ting equation (25) to these "data" by choosing optimal values of B and N in a
least squares sense. This process yielded the following:

B = 2.03x10-19

N =9.375

which are consistent with units of o in MPa and &P in hr-1. By using
equation (25), the critical time to buckling (corresponding to the constant
load case of curve (a) figure 6) turned out to be té = 7.8 hr; slightly
greater than the earlier reference té = 6 hr. Thus; in the calculated results

presented here (fig. 16), the nondimensional time =t 1is obtained by normaliza-
tion with respect to té. The time plotted is that for which the load

9 = -35 MPa is applied. On this basis, calculations of creep-buckling
response n{(t) for all of the loading histories presented earlier have been
included in figure 16. As expected, the time to buckling is completely unaf-
fected by any of the variable loading histories. This is because the classi-
cal Norton-Bailey representation (eq. (25)) fails to account for state recovery
in any form.

DISCUSSION

Dynamic recovery, as illustrated in figure 1 and by the state point tra-
jectories of figures 10 and 11, is characterized in the present constitutive
model through the dual analytical forms of the evolutionary law (eqgs. 2)).
This description is consistent with the viewpoint of Onat (ref. 17) in repre-
senting inelastic behavior through the specification of analytically different
mathematical forms corresponding to various regions of the state space. Here,
different analytical forms are specified depending on whether the state point
lies in the first (third) quadrant oa > O or the fourth (second) quadrant
oa < 0 of the state space. In effect, this permits the state point to recover
rapidly upon reversing the stress, even in the absence of significant reversed
inelastic strain (fig. 1). This formulation is intended as an idealization of
a physical process wherein the dislocation structure (or the associated struc-
ture of internal stress) is abruptly altered with a reversal of the applied
stress, because previously immobiltized dislocations are remobilized on their
slip planes (ref. 18). Since the inelastic state variable « is taken as an
averaged, phenomenological measure of the dislocation microstructure (or its
associated internal stress state), it too should reflect a rapid change as the
stress is reversed.

The specific functional form of the first of equations (2) is formulated
in accordance with the experimental results of Mitra and MclLean (ref. 19).
The second of equations (2) can be considered an analytical continuation of
the first equation, evaluated at a, (small «) in the first quadrant of the

state space, into the second quadrant; or with symmetrical response in tension
and compression, at -ay in the third quadrant into the fourth quadrant.
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This amounts to a highly idealized representation of the underlying physical
process, but captures, nevertheless, the essential feature - that abrupt micro-
structural rearrangements occur with stress reversals.

The path of the state point in the fourth quadrant oa < 0 in figures 1]
and 12, and, thus the extent of recovery, depend on the total strain rate and,
critically, on the parameter - Ideally, @y, Or, more comprehensively, a

function of o and o« replacing it, should be determined from experiments in
which the recovery of creep rate or flow stress under stress reversals is
measured directly; and not inferred indirectly from available monotonic ten-
sile, creep and/or relaxation data as was done here. The present representa-
tion, however, is believed to be adequate, and consistent with the objective
of demonstrating the strong influence of state recovery in creep buckling. A
more comprehensive description of dynamic recovery, in the same spirit as that
described, and the relevant experimentation are topics of continuing research.

Thermal recovery, as depicted in figure 2 and in the state paths shown in
figures 14 and 15, is manifest in the second (negative) term of the Bailey-
Orowan evolutionary equations (2). In the applications considered, the state
point recovers, in time, under constant (zero) reduced stress, giving rise to
an increased creep rate on reapplication of stress (fig. 2). Physically, this
macroscopic behavior is associated with thermally activated, diffusion con-
trolled, microscopic processes such as climb of edge dislocations; which allow
dislocations, in time, to bypass immobilizing obstacles, thus producing a
softer state (smailer o). The important material parameters in equations (2)
are R, m, and . Ideally, these parameters are determined from both creep
data and information obtained from stress or strain transient dip tests
(ref. 6) that provide a direct measurement of thermal recovery. Again, as
these data were not readily available for the alloy Narloy-Z, the pertinent
parameters were inferred indirectly from available data. This approach
although not optimal, is considered consistent with the present objectives.

CONCLUSIONS

We have examined the creep-buckling response of an idealized (Shanley)
column under some special variable loadings. The two types of loading consid-
ered amount to superpositions of the following load sequences on a constant
applied load: (1) rapid cyclic unloading/reloading sequences involving stress
reversals, and (2) cyclic loading that includes intermittent reductions of load
for extended periods of time (at elevated temperature).

Although the sandwich column model used is highly idealized, the constitu-
tive model is quite comprehensive in that it incorporates a representation of
dynamic and thermal (state) recovery. There is substantial experimental evi-
dence that many structural alloys embody internal mechanisms at elevated tem-
perature that allow inelastic strain rates to increase (recover) following
periods of hardening. In particular, this is believed to be true for the
representative copper alloy Narloy-Z characterized here.

The loading sequences examined are not intended to represent prototypical
loading histories for any particular structural component; instead, they were
chosen to best illustrate the generic influence of both dynamic and thermal
recovery on structural behavior in the presence of a creep induced instability.
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We expect that qualitatively similar behavior will accompany more realistic
variable loading conditions (and more realistic structures), and that neglect
of state recovery effects in such cases will lead, similarly, to nonconserva-
tive predictions of the critical time to creep buckling.

The following conclusions can be drawn from this study:

1. State recovery (dynamic and thermal) can have a significant effect on
creep-buckling behavior, that is, on the critical time.

2. Failure to account for state recovery in the constitutive equations
can lead to nonconservative predictions of the critical buckling time under
variable loading.

3. A classical Norton-Bailey type creep law, commonly used in creep-
buckling analyses, does not account for state recovery and, therefore, may sig-
nificantly over predict the time to creep buckling under variable loading.

4, It is important that constitutive models (which are to be used in
creep-buckling analyses involving variable loading) allow for recovery effects,
and furthermore, that the characterization tests used for determining the per-
tinent material parameters include direct measurements of state recovery.
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Figure 1. - Schematic representation of dynamic recovery. In the absence of
stress reversals, the stress relaxations over a fixed time ab, cd, and ef
show successive hardening. After the stress reversal fgh, stress relaxation

hj shows evidence of (creep) softening, that is, evidence of recovery of
state (ref. 1).
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Figure 2. - Schematic representation of thermal recovery. Response in an

interrupted creep test typically exhibits relatively small strain recovery
e but measurable softening (depending on the interval A<) following a

stress reduction, that is, recovery of state (ref. 2).
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Figure 3. - Comparison of (a) tensile data (ref. 14) and (b) predictions for
Narloy-Z at various temperatures.

Strain rate is 0.002/sec.
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Figure 4. - Comparison of stress relaxation data (ref. 15) and a prediction
for Narloy-Z at 811 K (1000 °F). Crosshatched region indicates range of

three tests.

Starting stress is 120 MPa.
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Figure 6. - Nondimensional displacement versus time for initial imperfections
of ng = 0.02 (a), 0.05 (b), 0.1 (¢), and 0.2 (d).
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Figure 7. - Nondimensional displacement versus time for loading histories
depicted in inserts (a), (b), and (c).
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Figure 8. - State space for bar 2 showing state path for constant load
(curve (a), fig. 6). Units MPa.
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Figure 9. - State space for bar 2 showing state paths corresponding to loading
histories of insert (a), figure 7. Units MPa.
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Figure 10. - State space for bar 2 showing state path corresponding to loading
history of insert (b), figure 7. Units MPa.
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Figure 13. - Nondimensional displacement versus time for loading histories
depicted in inserts (a), (b), and (¢).

486

oo



80.00

60,00

02 y0. 00 A

Jk\\\\

—

20.00-
0 £l D
0.00 - T T T T T
0.00 5.00 10.00 15.00 20.00 2S.00 J0.00
%2

Figure 14. - State space for bar 2 showing state path corresponding to
insert (b), figure 13. Units MPa.
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Figure 15. - State space for bar 2 showing state path corresponding to
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Figure 16. - Nondimensional displacement versus time for all loading histories
using classical Norton type creep law.
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